These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1129821)

  • 61. Snake and spider antivenin: risks and benefits of therapy.
    Weisman RS; Lizarralde SS; Thompson V
    J Fla Med Assoc; 1996 Mar; 83(3):192-5. PubMed ID: 8920051
    [No Abstract]   [Full Text] [Related]  

  • 62. Local effects induced by coral snake venoms: evidence of myonecrosis after experimental inoculations of venoms from five species.
    Gutiérrez JM; Lomonte B; Portilla E; Cerdas L; Rojas E
    Toxicon; 1983; 21(6):777-83. PubMed ID: 6658805
    [TBL] [Abstract][Full Text] [Related]  

  • 63. D.A.N. Cook et al.'s account of the immunization of camels is at variance with the 'low dose, low volume multi-site' immunization protocol.
    Ratanabanangkoon K
    Toxicon; 2010 Nov; 56(6):1079-80; author reply 1081. PubMed ID: 20620159
    [No Abstract]   [Full Text] [Related]  

  • 64. Immunological studies on Naja nigricollis antivenin.
    Mohamed AH; Darwish MA; Hani-Ayobe M
    Toxicon; 1973 Jan; 11(1):35-8. PubMed ID: 4199121
    [No Abstract]   [Full Text] [Related]  

  • 65. Neuromuscular activity of the venoms of the Colombian coral snakes Micrurus dissoleucus and Micrurus mipartitus: an evolutionary perspective.
    Renjifo C; Smith EN; Hodgson WC; Renjifo JM; Sanchez A; Acosta R; Maldonado JH; Riveros A
    Toxicon; 2012 Jan; 59(1):132-42. PubMed ID: 22108621
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Potency Testing of Venoms and Antivenoms in Embryonated Eggs: An Ethical Alternative to Animal Testing.
    Verity EE; Stewart K; Vandenberg K; Ong C; Rockman S
    Toxins (Basel); 2021 Mar; 13(4):. PubMed ID: 33805138
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Intravascular hemolysis induced by the venom of the Eastern coral snake, Micrurus fulvius, in a mouse model: identification of directly hemolytic phospholipases A2.
    Arce-Bejarano R; Lomonte B; Gutiérrez JM
    Toxicon; 2014 Nov; 90():26-35. PubMed ID: 25088177
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Immunological studies on Egyptian cobra antivenin.
    Mohamed AH; Darwish MA; Hani-Ayobe M
    Toxicon; 1973 Jan; 11(1):31-4. PubMed ID: 4199120
    [No Abstract]   [Full Text] [Related]  

  • 69. Assessing SABU (Serum Anti Bisa Ular), the sole Indonesian antivenom: A proteomic analysis and neutralization efficacy study.
    Tan CH; Liew JL; Tan KY; Tan NH
    Sci Rep; 2016 Nov; 6():37299. PubMed ID: 27869134
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Functional Application of Snake Venom Proteomics in In Vivo Antivenom Assessment.
    Tan CH; Tan KY
    Methods Mol Biol; 2019; 1871():153-158. PubMed ID: 30276739
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparative enzymatic composition of Brazilian coral snake (Micrurus) venoms.
    Aird SD; da Silva NJ
    Comp Biochem Physiol B; 1991; 99(2):287-94. PubMed ID: 1662592
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characterization of anti-crotalic antibodies.
    Guidolin FR; Tambourgi DV; Guidolin R; Marcelino JR; Okamoto CK; Magnoli FC; Queiroz GP; Dias da Silva W
    Toxicon; 2013 May; 66():7-17. PubMed ID: 23402840
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Endogenous thrombin potential as a novel method for the characterization of procoagulant snake venoms and the efficacy of antivenom.
    Isbister GK; Woods D; Alley S; O'Leary MA; Seldon M; Lincz LF
    Toxicon; 2010 Aug; 56(1):75-85. PubMed ID: 20338189
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Assessment of quality, safety, and pre-clinical toxicity of an equine polyvalent anti-snake venom (Pan Africa): Determination of immunological cross-reactivity of antivenom against venom samples of Elapidae and Viperidae snakes of Africa.
    Patra A; Kalita B; Mukherjee AK
    Toxicon; 2018 Oct; 153():120-127. PubMed ID: 30189243
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The production and characterization of anti-bothropic and anti-crotalic IgY antibodies in laying hens: a long term experiment.
    de Andrade FG; Eto SF; Navarro dos Santos Ferraro AC; Gonzales Marioto DT; Vieira NJ; Cheirubim AP; de Paula Ramos S; Venâncio EJ
    Toxicon; 2013 May; 66():18-24. PubMed ID: 23416799
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Coagulant effects of black snake (Pseudechis spp.) venoms and in vitro efficacy of commercial antivenom.
    Lane J; O'Leary MA; Isbister GK
    Toxicon; 2011 Sep; 58(3):239-46. PubMed ID: 21723878
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An MTT-based method for the in vivo quantification of myotoxic activity of snake venoms and its neutralization by antibodies.
    Lomonte B; Gutiérrez JM; Romero M; Núñez J; Tarkowski A; Hanson LA
    J Immunol Methods; 1993 May; 161(2):231-7. PubMed ID: 8505552
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Immunological studies on monovalent and bivalent Cerastes antivenin.
    Mohamed AH; Abdel-Baset A; Hassan A
    Toxicon; 1980; 18(3):384-7. PubMed ID: 6771891
    [No Abstract]   [Full Text] [Related]  

  • 79. Selecting key toxins for focused development of elapid snake antivenoms and inhibitors guided by a Toxicity Score.
    Laustsen AH; Lohse B; Lomonte B; Engmark M; Gutiérrez JM
    Toxicon; 2015 Sep; 104():43-5. PubMed ID: 26238171
    [No Abstract]   [Full Text] [Related]  

  • 80. Preclinical assessment of the neutralizing efficacy of snake antivenoms in Latin America and the Caribbean: A review.
    Gutiérrez JM
    Toxicon; 2018 May; 146():138-150. PubMed ID: 29510161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.