These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 11298234)
1. Expression of a modified Neocallimastix patriciarum xylanase in Butyrivibrio fibrisolvens digests more fibre but cannot effectively compete with highly fibrolytic bacteria in the rumen. Krause DO; Bunch RJ; Dalrymple BD; Gobius KS; Smith WJ; Xue GP; McSweeney CS J Appl Microbiol; 2001 Mar; 90(3):388-96. PubMed ID: 11298234 [TBL] [Abstract][Full Text] [Related]
2. Transformation and expression of an anaerobic fungal xylanase in several strains of the rumen bacterium Butyrivibrio fibrisolvens. Gobius KS; Xue GP; Aylward JH; Dalrymple BP; Swadling YJ; McSweeney CS; Krause DO J Appl Microbiol; 2002; 93(1):122-33. PubMed ID: 12067381 [TBL] [Abstract][Full Text] [Related]
3. Improvement of expression and secretion of a fungal xylanase in the rumen bacterium Butyrivibrio fibrisolvens OB156 by manipulation of promoter and signal sequences. Xue GP; Johnson JS; Bransgrove KL; Gregg K; Beard CE; Dalrymple BP; Gobius KS; Aylward JH J Biotechnol; 1997 Apr; 54(2):139-48. PubMed ID: 9195758 [TBL] [Abstract][Full Text] [Related]
4. An acetylxylan esterase and a xylanase expressed from genes cloned from the ruminal fungus Neocallimastix patriciarum act synergistically to degrade acetylated xylans. Cybinski DH; Layton I; Lowry JB; Dalrymple BP Appl Microbiol Biotechnol; 1999 Aug; 52(2):221-5. PubMed ID: 10499262 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a Neocallimastix patriciarum xylanase gene and its product. Liu JH; Selinger BL; Tsai CF; Cheng KJ Can J Microbiol; 1999 Nov; 45(11):970-4. PubMed ID: 10588045 [TBL] [Abstract][Full Text] [Related]
6. Distribution and evolution of the xylanase genes xynA and xynB and their homologues in strains of Butyrivibrio fibrisolvens. Dalrymple BP; Swadling Y; Layton I; Gobius KS; Xue GP Appl Environ Microbiol; 1999 Aug; 65(8):3660-7. PubMed ID: 10427063 [TBL] [Abstract][Full Text] [Related]
7. Modification of a xylanase cDNA isolated from an anaerobic fungus Neocallimastix patriciarum for high-level expression in Escherichia coli. Xue GP; Denman SE; Glassop D; Johnson JS; Dierens LM; Gobius KS; Aylward JH J Biotechnol; 1995 Jan; 38(3):269-77. PubMed ID: 7765876 [TBL] [Abstract][Full Text] [Related]
8. Fiber degradation potential of natural co-cultures of Neocallimastix frontalis and Methanobrevibacter ruminantium isolated from yaks (Bos grunniens) grazing on the Qinghai Tibetan Plateau. Wei YQ; Long RJ; Yang H; Yang HJ; Shen XH; Shi RF; Wang ZY; Du JG; Qi XJ; Ye QH Anaerobe; 2016 Jun; 39():158-64. PubMed ID: 26979345 [TBL] [Abstract][Full Text] [Related]
9. Molecular cloning and characterization of a bifunctional xylanolytic enzyme from Neocallimastix patriciarum. Pai CK; Wu ZY; Chen MJ; Zeng YF; Chen JW; Duan CH; Li ML; Liu JR Appl Microbiol Biotechnol; 2010 Feb; 85(5):1451-62. PubMed ID: 19690850 [TBL] [Abstract][Full Text] [Related]
10. Butyrivibrio spp. and other xylanolytic microorganisms from the rumen have cinnamoyl esterase activity. McSweeney CS; Dulieu A; Bunch R Anaerobe; 1998 Feb; 4(1):57-65. PubMed ID: 16887624 [TBL] [Abstract][Full Text] [Related]
11. Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Chen YL; Tang TY; Cheng KJ Can J Microbiol; 2001 Dec; 47(12):1088-94. PubMed ID: 11822834 [TBL] [Abstract][Full Text] [Related]
12. Coexpression of rumen microbial beta-glucanase and xylanase genes in Lactobacillus reuteri. Liu JR; Yu B; Zhao X; Cheng KJ Appl Microbiol Biotechnol; 2007 Nov; 77(1):117-24. PubMed ID: 17694302 [TBL] [Abstract][Full Text] [Related]
13. Constitutive expression of a heterologous Eubacterium ruminantium xylanase gene (xynA) in Butyrivibrio fibrisolvens. Kobayashi Y; Okuda N; Matsumoto M; Inoue K; Wakita M; Hoshino S FEMS Microbiol Lett; 1998 Jun; 163(1):11-7. PubMed ID: 9631539 [TBL] [Abstract][Full Text] [Related]
14. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi. Chaucheyras-Durand F; Ameilbonne A; Bichat A; Mosoni P; Ossa F; Forano E J Appl Microbiol; 2016 Mar; 120(3):560-70. PubMed ID: 26600313 [TBL] [Abstract][Full Text] [Related]
15. Fibrolytic potential of anaerobic fungi (Piromyces sp.) isolated from wild cattle and blue bulls in pure culture and effect of their addition on in vitro fermentation of wheat straw and methane emission by rumen fluid of buffaloes. Paul SS; Deb SM; Punia BS; Singh D; Kumar R J Sci Food Agric; 2010 May; 90(7):1218-26. PubMed ID: 20394004 [TBL] [Abstract][Full Text] [Related]
16. Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet. McSweeney CS; Denman SE J Appl Microbiol; 2007 Nov; 103(5):1757-65. PubMed ID: 17953586 [TBL] [Abstract][Full Text] [Related]
17. Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet. Giraldo LA; Tejido ML; Ranilla MJ; Ramos S; Carro MD J Anim Sci; 2008 Jul; 86(7):1617-23. PubMed ID: 18344313 [TBL] [Abstract][Full Text] [Related]
18. Influence of supplementary fibrolytic enzymes on the fermentation of corn and grass silages by mixed ruminal microorganisms in vitro. Wallace RJ; Wallace SJ; McKain N; Nsereko VL; Hartnell GF J Anim Sci; 2001 Jul; 79(7):1905-16. PubMed ID: 11465379 [TBL] [Abstract][Full Text] [Related]
19. Identification of non-catalytic conserved regions in xylanases encoded by the xynB and xynD genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens. Zhang JX; Martin J; Flint HJ Mol Gen Genet; 1994 Oct; 245(2):260-4. PubMed ID: 7816035 [TBL] [Abstract][Full Text] [Related]
20. Multiplicity and expression of xylanases in the rumen fungus Neocallimastix frontalis. Gomez de Segura B; Durand R; Fèvre M FEMS Microbiol Lett; 1998 Jul; 164(1):47-53. PubMed ID: 9675850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]