These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11298448)

  • 1. Chemical speciation drives hydrothermal vent ecology.
    Luther GW; Rozan TF; Taillefert M; Nuzzio DB; Di Meo C; Shank TM; Lutz RA; Cary SC
    Nature; 2001 Apr; 410(6830):813-6. PubMed ID: 11298448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-sea ecology. Developmental arrest in vent worm embryos.
    Pradillon F; Shillito B; Young CM; Gaill F
    Nature; 2001 Oct; 413(6857):698-9. PubMed ID: 11607020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel uncultured Epsilonproteobacteria dominate a filamentous sulphur mat from the 13 degrees N hydrothermal vent field, East Pacific Rise.
    Moussard H; Corre E; Cambon-Bonavita MA; Fouquet Y; Jeanthon C
    FEMS Microbiol Ecol; 2006 Dec; 58(3):449-63. PubMed ID: 16989658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metazoans in extreme environments: adaptations of hydrothermal vent and hydrocarbon seep fauna.
    McMullin ER; Bergquist DC; Fisher CR
    Gravit Space Biol Bull; 2000 Jun; 13(2):13-23. PubMed ID: 11543277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of environmental conditions on early development of the hydrothermal vent polychaete Alvinella pompejana.
    Pradillon F; Le Bris N; Shillito B; Young CM; Gaill F
    J Exp Biol; 2005 Apr; 208(Pt 8):1551-61. PubMed ID: 15802678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents.
    Reysenbach AL; Liu Y; Banta AB; Beveridge TJ; Kirshtein JD; Schouten S; Tivey MK; Von Damm KL; Voytek MA
    Nature; 2006 Jul; 442(7101):444-7. PubMed ID: 16871216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Structure and geography of hydrothermal communities in the Global ocean].
    Galkin SV
    Zh Obshch Biol; 2010; 71(3):205-18. PubMed ID: 20583633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37 degrees N).
    Sarradin PM; Waeles M; Bernagout S; Le Gall C; Sarrazin J; Riso R
    Sci Total Environ; 2009 Jan; 407(2):869-78. PubMed ID: 19004471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific.
    Tarasov VG
    Adv Mar Biol; 2006; 50():267-421. PubMed ID: 16782453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature.
    Girguis PR; Childress JJ
    J Exp Biol; 2006 Sep; 209(Pt 18):3516-28. PubMed ID: 16943492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage.
    McCliment EA; Voglesonger KM; O'Day PA; Dunn EE; Holloway JR; Cary SC
    Environ Microbiol; 2006 Jan; 8(1):114-25. PubMed ID: 16343327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome complexity and repetitive DNA in metazoans from extreme marine environments.
    Fielman KT; Marsh AG
    Gene; 2005 Dec; 362():98-108. PubMed ID: 16188403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents.
    Marsh AG; Mullineaux LS; Young CM; Manahan DT
    Nature; 2001 May; 411(6833):77-80. PubMed ID: 11333980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal preference and tolerance of alvinellids.
    Girguis PR; Lee RW
    Science; 2006 Apr; 312(5771):231. PubMed ID: 16614212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-sea hydrothermal vents: potential hot spots for natural products discovery?
    Thornburg CC; Zabriskie TM; McPhail KL
    J Nat Prod; 2010 Mar; 73(3):489-99. PubMed ID: 20099811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Adaptation of organisms to extreme conditions of deep-sea hydrothermal vents].
    Minic Z; Serre V; Hervé G
    C R Biol; 2006 Jul; 329(7):527-40. PubMed ID: 16797459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and functional adaptations in deep-sea hemoglobins.
    Hourdez S; Weber RE
    J Inorg Biochem; 2005 Jan; 99(1):130-41. PubMed ID: 15598497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace elements and arsenic speciation in tissues of tube dwelling polychaetes from hydrothermal vent ecosystems (East Pacific Rise): An ecological role as antipredatory strategy?
    Di Carlo M; Giovannelli D; Fattorini D; Le Bris N; Vetriani C; Regoli F
    Mar Environ Res; 2017 Dec; 132():1-13. PubMed ID: 29037570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulatory effect of sulphide on thiotaurine synthesis in three hydrothermal-vent species from the East Pacific Rise.
    Pruski AM; Fiala-Médioni A
    J Exp Biol; 2003 Sep; 206(Pt 17):2923-30. PubMed ID: 12878661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organics in chimneys and water samples from deep-sea hydrothermal systems: implications for sub-vent biosphere.
    Horiuchi T; Kobayashi K; Takano Y; Marumo K; Nakashima M; Yamagishi A; Ishibashi J; Urabe T
    Biol Sci Space; 2003 Oct; 17(3):190-1. PubMed ID: 14676368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.