BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 11298745)

  • 41. Cdc5 interacts with the Wee1 kinase in budding yeast.
    Bartholomew CR; Woo SH; Chung YS; Jones C; Hardy CF
    Mol Cell Biol; 2001 Aug; 21(15):4949-59. PubMed ID: 11438652
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone.
    Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH
    Cell; 1997 Jul; 90(1):65-75. PubMed ID: 9230303
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence that protein phosphatase 5 functions to negatively modulate the maturation of the Hsp90-dependent heme-regulated eIF2alpha kinase.
    Shao J; Hartson SD; Matts RL
    Biochemistry; 2002 May; 41(21):6770-9. PubMed ID: 12022881
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53.
    King FW; Wawrzynow A; Höhfeld J; Zylicz M
    EMBO J; 2001 Nov; 20(22):6297-305. PubMed ID: 11707401
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes.
    Banumathy G; Singh V; Pavithra SR; Tatu U
    J Biol Chem; 2003 May; 278(20):18336-45. PubMed ID: 12584193
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Hsp90 co-chaperones Cdc37 and Sti1 interact physically and genetically.
    Abbas-Terki T; Briand PA; Donzé O; Picard D
    Biol Chem; 2002 Sep; 383(9):1335-42. PubMed ID: 12437126
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response.
    Duina AA; Kalton HM; Gaber RF
    J Biol Chem; 1998 Jul; 273(30):18974-8. PubMed ID: 9668076
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.
    Prodromou C; Siligardi G; O'Brien R; Woolfson DN; Regan L; Panaretou B; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1999 Feb; 18(3):754-62. PubMed ID: 9927435
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling the fission yeast cell cycle: quantized cycle times in wee1- cdc25Delta mutant cells.
    Sveiczer A; Csikasz-Nagy A; Gyorffy B; Tyson JJ; Novak B
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):7865-70. PubMed ID: 10884416
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phosphorylation and inactivation of the mitotic inhibitor Wee1 by the nim1/cdr1 kinase.
    Parker LL; Walter SA; Young PG; Piwnica-Worms H
    Nature; 1993 Jun; 363(6431):736-8. PubMed ID: 8515817
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hsp90 phosphorylation, Wee1 and the cell cycle.
    Mollapour M; Tsutsumi S; Neckers L
    Cell Cycle; 2010 Jun; 9(12):2310-6. PubMed ID: 20519952
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of geldanamycin on the kinetics of chaperone-mediated renaturation of firefly luciferase in rabbit reticulocyte lysate.
    Thulasiraman V; Matts RL
    Biochemistry; 1996 Oct; 35(41):13443-50. PubMed ID: 8873613
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The molecular chaperone Hsp90 is required for signal transduction by wild-type Hck and maintenance of its constitutively active counterpart.
    Scholz GM; Hartson SD; Cartledge K; Volk L; Matts RL; Dunn AR
    Cell Growth Differ; 2001 Aug; 12(8):409-17. PubMed ID: 11504706
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The identification of Wos2, a p23 homologue that interacts with Wee1 and Cdc2 in the mitotic control of fission yeasts.
    Muñoz MJ; Bejarano ER; Daga RR; Jimenez J
    Genetics; 1999 Dec; 153(4):1561-72. PubMed ID: 10581266
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Radicicol binding to Swo1/Hsp90 and inhibition of growth of specific temperature-sensitive cell cycle mutants of fission yeast.
    Ki SW; Kasahara K; Kwon HJ; Ishigami K; Kitahara T; Beppu T; Yoshida M; Horinouchi S
    Biosci Biotechnol Biochem; 2001 Nov; 65(11):2528-34. PubMed ID: 11791728
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nif1, a novel mitotic inhibitor in Schizosaccharomyces pombe.
    Wu L; Russell P
    EMBO J; 1997 Mar; 16(6):1342-50. PubMed ID: 9135149
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The charged region of Hsp90 modulates the function of the N-terminal domain.
    Scheibel T; Siegmund HI; Jaenicke R; Ganz P; Lilie H; Buchner J
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1297-302. PubMed ID: 9990018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional and physical interaction between yeast Hsp90 and Hsp70.
    Kravats AN; Hoskins JR; Reidy M; Johnson JL; Doyle SM; Genest O; Masison DC; Wickner S
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):E2210-E2219. PubMed ID: 29463764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Combined inhibition of Wee1 and Hsp90 activates intrinsic apoptosis in cancer cells.
    Iwai A; Bourboulia D; Mollapour M; Jensen-Taubman S; Lee S; Donnelly AC; Yoshida S; Miyajima N; Tsutsumi S; Smith AK; Sun D; Wu X; Blagg BS; Trepel JB; Stetler-Stevenson WG; Neckers L
    Cell Cycle; 2012 Oct; 11(19):3649-55. PubMed ID: 22935698
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The peptidyl-prolyl isomerase domain of the CyP-40 cyclophilin homolog Cpr7 is not required to support growth or glucocorticoid receptor activity in Saccharomyces cerevisiae.
    Duina AA; Marsh JA; Kurtz RB; Chang HC; Lindquist S; Gaber RF
    J Biol Chem; 1998 May; 273(18):10819-22. PubMed ID: 9556552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.