BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 11298763)

  • 1. Molecular cloning of a mammalian nuclear phosphoprotein NUCKS, which serves as a substrate for Cdk1 in vivo.
    Ostvold AC; Norum JH; Mathiesen S; Wanvik B; Sefland I; Grundt K
    Eur J Biochem; 2001 Apr; 268(8):2430-40. PubMed ID: 11298763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of two putative nuclear localization signals (NLS) in the DNA-binding protein NUCKS.
    Grundt K; Haga IV; Huitfeldt HS; Ostvold AC
    Biochim Biophys Acta; 2007 Sep; 1773(9):1398-406. PubMed ID: 17604136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of kinases phosphorylating 13 sites in the nuclear, DNA-binding protein NUCKS.
    Grundt K; Thiede B; Østvold AC
    Biochim Biophys Acta Proteins Proteom; 2017 Mar; 1865(3):359-369. PubMed ID: 28011258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning of a murine cDNA encoding a novel protein, p38-2G4, which varies with the cell cycle.
    Radomski N; Jost E
    Exp Cell Res; 1995 Oct; 220(2):434-45. PubMed ID: 7556453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning and characterization of a novel casein kinase II substrate, HASPP28, from rat brain.
    Shen L; Huang KP; Chen HC; Huang FL
    Arch Biochem Biophys; 1996 Mar; 327(1):131-41. PubMed ID: 8615683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of a novel zinc-finger-like protein, ZPR9, by murine protein serine/threonine kinase 38 (MPK38).
    Seong HA; Gil M; Kim KT; Kim SJ; Ha H
    Biochem J; 2002 Feb; 361(Pt 3):597-604. PubMed ID: 11802789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A putative DNA-binding domain in the NUCKS protein.
    Grundt K; Skjeldal L; Anthonsen HW; Skauge T; Huitfeldt HS; Østvold AC
    Arch Biochem Biophys; 2002 Nov; 407(2):168-75. PubMed ID: 12413487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic expression of the vertebrate-specific protein Nucks during rodent embryonic development.
    Drosos Y; Kouloukoussa M; Ostvold AC; Havaki S; Katsantoni E; Marinos E; Aleporou-Marinou V
    Gene Expr Patterns; 2014 Jan; 14(1):19-29. PubMed ID: 24140890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning, chromosomal localization, and cell cycle-dependent subcellular distribution of the A-kinase anchoring protein, AKAP95.
    Eide T; Coghlan V; Orstavik S; Holsve C; Solberg R; Skâlhegg BS; Lamb NJ; Langeberg L; Fernandez A; Scott JD; Jahnsen T; Taskén K
    Exp Cell Res; 1998 Feb; 238(2):305-16. PubMed ID: 9473338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning of two new interferon-induced, highly related nuclear phosphoproteins.
    Kadereit S; Gewert DR; Galabru J; Hovanessian AG; Meurs EF
    J Biol Chem; 1993 Nov; 268(32):24432-41. PubMed ID: 7693701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation by cdc2 kinase modulates DNA binding activity of high mobility group I nonhistone chromatin protein.
    Nissen MS; Langan TA; Reeves R
    J Biol Chem; 1991 Oct; 266(30):19945-52. PubMed ID: 1939057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fbx7 functions in the SCF complex regulating Cdk1-cyclin B-phosphorylated hepatoma up-regulated protein (HURP) proteolysis by a proline-rich region.
    Hsu JM; Lee YC; Yu CT; Huang CY
    J Biol Chem; 2004 Jul; 279(31):32592-602. PubMed ID: 15145941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel phosphorylation sites in murine A-type lamins.
    Eggert M; Radomski N; Linder D; Tripier D; Traub P; Jost E
    Eur J Biochem; 1993 Apr; 213(2):659-71. PubMed ID: 8477740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lamin B receptor of the inner nuclear membrane undergoes mitosis-specific phosphorylation and is a substrate for p34cdc2-type protein kinase.
    Courvalin JC; Segil N; Blobel G; Worman HJ
    J Biol Chem; 1992 Sep; 267(27):19035-8. PubMed ID: 1326541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cDNA cloning of the HMGI-C phosphoprotein, a nuclear protein associated with neoplastic and undifferentiated phenotypes.
    Manfioletti G; Giancotti V; Bandiera A; Buratti E; Sautière P; Cary P; Crane-Robinson C; Coles B; Goodwin GH
    Nucleic Acids Res; 1991 Dec; 19(24):6793-7. PubMed ID: 1762909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope.
    Westendorf JM; Rao PN; Gerace L
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):714-8. PubMed ID: 8290587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutive and dynamic phosphorylation and acetylation sites on NUCKS, a hypermodified nuclear protein, studied by quantitative proteomics.
    Wiśniewski JR; Zougman A; Krüger S; Ziółkowski P; Pudełko M; Bebenek M; Mann M
    Proteins; 2008 Nov; 73(3):710-8. PubMed ID: 18491381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cdc2 and mitogen-activated protein kinases modulate DNA binding properties of the putative transcriptional regulator Chironomus high mobility group protein I.
    Schwanbeck R; Wiśniewski JR
    J Biol Chem; 1997 Oct; 272(43):27476-83. PubMed ID: 9341202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of the DNA-binding domain of nonhistone high-mobility group I protein by cdc2 kinase: reduction of binding affinity.
    Reeves R; Langan TA; Nissen MS
    Proc Natl Acad Sci U S A; 1991 Mar; 88(5):1671-5. PubMed ID: 2000376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SET-related cell division autoantigen-1 (CDA1) arrests cell growth.
    Chai Z; Sarcevic B; Mawson A; Toh BH
    J Biol Chem; 2001 Sep; 276(36):33665-74. PubMed ID: 11395479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.