These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11298804)

  • 61. Computer analysis of cardiovascular changes during sleep-wake cycle in Sprague-Dawley rats.
    Lacombe J; Nosjean A; Meunier JM; Laguzzi R
    Am J Physiol; 1988 Feb; 254(2 Pt 2):H217-22. PubMed ID: 3344812
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Prenatal protein malnourished rats show changes in sleep/wake behavior as adults.
    Datta S; Patterson EH; Vincitore M; Tonkiss J; Morgane PJ; Galler JR
    J Sleep Res; 2000 Mar; 9(1):71-9. PubMed ID: 10733692
    [TBL] [Abstract][Full Text] [Related]  

  • 63. From waking to sleeping: neuronal and chemical substrates.
    Jones BE
    Trends Pharmacol Sci; 2005 Nov; 26(11):578-86. PubMed ID: 16183137
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Internal temperature variations during the sleep-wake cycle in the rat.
    Roussel B; Dittmar A; Chouvet G
    Waking Sleeping; 1980; 4(1):63-75. PubMed ID: 7395196
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats.
    Marrosu F; Portas C; Mascia MS; Casu MA; Fà M; Giagheddu M; Imperato A; Gessa GL
    Brain Res; 1995 Feb; 671(2):329-32. PubMed ID: 7743225
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sleep-wake and diurnal modulation of nitric oxide in the perifornical-lateral hypothalamic area: real-time detection in freely behaving rats.
    Kostin A; McGinty D; Szymusiak R; Alam MN
    Neuroscience; 2013 Dec; 254():275-84. PubMed ID: 24056193
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Extracellular serotonin variations during vigilance states in the preoptic area of rats: a microdialysis study.
    Python A; Steimer T; de Saint Hilaire Z; Mikolajewski R; Nicolaidis S
    Brain Res; 2001 Aug; 910(1-2):49-54. PubMed ID: 11489253
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Oscillations in the oxidation-reduction potential of the brain tissue in rats developing during wakefulness and slow-wave sleep].
    Shvets-Ténéta-Guriĭ TB; Troshin GI; Dubinin AG; Novikova MR
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2000; 50(2):261-73. PubMed ID: 10822845
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action.
    España RA; Baldo BA; Kelley AE; Berridge CW
    Neuroscience; 2001; 106(4):699-715. PubMed ID: 11682157
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Delta oscillations induced by ketamine increase energy levels in sleep-wake related brain regions.
    Dworak M; McCarley RW; Kim T; Basheer R
    Neuroscience; 2011 Dec; 197():72-9. PubMed ID: 21958867
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Locus coeruleus neuronal activity during the sleep-waking cycle in mice.
    Takahashi K; Kayama Y; Lin JS; Sakai K
    Neuroscience; 2010 Sep; 169(3):1115-26. PubMed ID: 20542093
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat.
    Goutagny R; Luppi PH; Salvert D; Lapray D; Gervasoni D; Fort P
    Neuroscience; 2008 Mar; 152(3):849-57. PubMed ID: 18308473
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Are there Sleep-promoting Neurons in the Mouse Parafacial Zone?
    Sakai K
    Neuroscience; 2017 Dec; 367():98-109. PubMed ID: 29111358
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Auditory evoked potentials from auditory cortex, medial geniculate nucleus, and inferior colliculus during sleep-wake states and spike-wave discharges in the WAG/Rij rat.
    Meeren HK; van Cappellen van Walsum AM; van Luijtelaar EL; Coenen AM
    Brain Res; 2001 Apr; 898(2):321-31. PubMed ID: 11306019
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Principal cell types of sleep-wake regulatory circuits.
    Jones BE
    Curr Opin Neurobiol; 2017 Jun; 44():101-109. PubMed ID: 28433001
    [TBL] [Abstract][Full Text] [Related]  

  • 77. State-dependent changes of extracellular glutamate in the medial preoptic area in freely behaving rats.
    Azuma S; Kodama T; Honda K; Inoué S
    Neurosci Lett; 1996 Aug; 214(2-3):179-82. PubMed ID: 8878113
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Specific neurons for wakefulness in the posterior hypothalamus in the cat].
    Vanni-Mercier G; Sakai K; Jouvet M
    C R Acad Sci III; 1984; 298(7):195-200. PubMed ID: 6424901
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hypoprolactinemic rats under conditions of constant darkness or constant light. Effects on the sleep-wake cycle, cerebral temperature and sulfatoxymelatonin levels.
    Lobo LL; Claustrat B; Debilly G; Paut-Pagano L; Jouvet M; Valatx JL
    Brain Res; 1999 Jul; 835(2):282-9. PubMed ID: 10415384
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.
    Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Song JZ; Ding H; Wang ZJ; Zhang YH
    J Neurochem; 2016 Feb; 136(3):609-19. PubMed ID: 26558357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.