These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11298872)

  • 1. The role of tip plasmons in near-field Raman microscopy.
    Milner RG; Richards D
    J Microsc; 2001 Apr; 202(Pt 1):66-71. PubMed ID: 11298872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering.
    Demming AL; Festy F; Richards D
    J Chem Phys; 2005 May; 122(18):184716. PubMed ID: 15918756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonant excitation of tip plasmons for tip-enhanced Raman SNOM.
    Festy F; Demming A; Richards D
    Ultramicroscopy; 2004 Aug; 100(3-4):437-41. PubMed ID: 15231336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric near-field enhancing properties of a finite-size metal conical nano-tip.
    Goncharenko AV; Chang HC; Wang JK
    Ultramicroscopy; 2007; 107(2-3):151-7. PubMed ID: 16876947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination.
    Chen W; Zhan Q
    Opt Express; 2007 Apr; 15(7):4106-11. PubMed ID: 19532653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel routes to electromagnetic enhancement and its characterisation in surface- and tip-enhanced Raman scattering.
    Dawson P; Frey D; Kalathingal V; Mehfuz R; Mitra J
    Faraday Discuss; 2017 Dec; 205():121-148. PubMed ID: 28884781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips.
    Roth RM; Panoiu NC; Adams MM; Osgood RM; Neacsu CC; Raschke MB
    Opt Express; 2006 Apr; 14(7):2921-31. PubMed ID: 19516430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips.
    Notingher I; Elfick A
    J Phys Chem B; 2005 Aug; 109(33):15699-706. PubMed ID: 16852992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optoplasmonic probe to realize scanning near-field Raman microscopy.
    Liu Y; Hu D; Pang L; Gao F; Zhang Z; Du J
    Opt Express; 2016 Mar; 24(5):5243-5252. PubMed ID: 29092349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigations on the electromagnetic enhancement effect to tip-enhanced Raman scattering and fluorescence processes.
    Wei Y; Pei H; Sun D; Duan S; Tian G
    J Phys Condens Matter; 2019 Jun; 31(23):235301. PubMed ID: 30818299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High efficiency plasmonic probe design for parallel near-field optics applications.
    Rui G; Chen W; Zhan Q
    Opt Express; 2011 Mar; 19(6):5187-95. PubMed ID: 21445154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superfocusing of electric or magnetic fields using conical metal tips: effect of mode symmetry on the plasmon excitation method.
    Lee JS; Han S; Shirdel J; Koo S; Sadiq D; Lienau C; Park N
    Opt Express; 2011 Jun; 19(13):12342-7. PubMed ID: 21716471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decay channels of gap plasmons in STM tunnel junctions.
    Lu Y; Chen Y; Xu J; Wang T; Lü JT
    Opt Express; 2018 Nov; 26(23):30444-30455. PubMed ID: 30469918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant terahertz probes for near-field scattering microscopy.
    Siday T; Natrella M; Wu J; Liu H; Mitrofanov O
    Opt Express; 2017 Oct; 25(22):27874-27885. PubMed ID: 29092256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-coupled tip-enhanced near-field optical microscopy.
    Bouhelier A; Renger J; Beversluis MR; Novotny L
    J Microsc; 2003 Jun; 210(Pt 3):220-4. PubMed ID: 12787088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and electromagnetic mechanisms of tip-enhanced Raman scattering.
    Sun M; Fang Y; Yang Z; Xu H
    Phys Chem Chem Phys; 2009 Nov; 11(41):9412-9. PubMed ID: 19830324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-field thermal transport in a nanotip under laser irradiation.
    Chen X; Wang X
    Nanotechnology; 2011 Feb; 22(7):075204. PubMed ID: 21233541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model.
    Kitahama Y; Itoh T; Suzuki T
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():142-147. PubMed ID: 29339023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-patterning photosensitive polymers using local field enhancement at the end of apertureless SNOM tips.
    H'dhili F; Bachelot R; Rumyantseva A; Lerondel G; Royer P
    J Microsc; 2003 Mar; 209(Pt 3):214-22. PubMed ID: 12641765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.