These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 11299202)
1. COX-2-dependent delayed dilatation of cerebral arterioles in response to bradykinin. Brian JE; Faraci FM; Moore SA Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2023-9. PubMed ID: 11299202 [TBL] [Abstract][Full Text] [Related]
2. Expression and vascular effects of cyclooxygenase-2 in brain. Brian JE; Moore SA; Faraci FM Stroke; 1998 Dec; 29(12):2600-6. PubMed ID: 9836773 [TBL] [Abstract][Full Text] [Related]
3. Hypertension alters role of iNOS, COX-2, and oxidative stress in bradykinin relaxation impairment after LPS in rat cerebral arteries. Hernanz R; Briones AM; Alonso MJ; Vila E; Salaices M Am J Physiol Heart Circ Physiol; 2004 Jul; 287(1):H225-34. PubMed ID: 15001439 [TBL] [Abstract][Full Text] [Related]
4. Tumor necrosis factor-alpha-induced dilatation of cerebral arterioles. Brian JE; Faraci FM Stroke; 1998 Feb; 29(2):509-15. PubMed ID: 9472897 [TBL] [Abstract][Full Text] [Related]
5. Significance of endothelial prostacyclin and nitric oxide in peripheral and pulmonary circulation. Gryglewski RJ; Chłopicki S; Uracz W; Marcinkiewicz E Med Sci Monit; 2001; 7(1):1-16. PubMed ID: 11208485 [TBL] [Abstract][Full Text] [Related]
6. Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Niwa K; Haensel C; Ross ME; Iadecola C Circ Res; 2001 Mar; 88(6):600-8. PubMed ID: 11282894 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels. Sobey CG; Heistad DD; Faraci FM Stroke; 1997 Nov; 28(11):2290-4; discussion 2295. PubMed ID: 9368578 [TBL] [Abstract][Full Text] [Related]
9. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. Niwa K; Araki E; Morham SG; Ross ME; Iadecola C J Neurosci; 2000 Jan; 20(2):763-70. PubMed ID: 10632605 [TBL] [Abstract][Full Text] [Related]
10. Endothelial and nonendothelial cyclooxygenase mediate rabbit pial arteriole dilation by bradykinin. Copeland JR; Willoughby KA; Tynan TM; Moore SF; Ellis EF Am J Physiol; 1995 Jan; 268(1 Pt 2):H458-66. PubMed ID: 7530923 [TBL] [Abstract][Full Text] [Related]
11. Stimulation of cyclooxygenase-2-activity by nitric oxide-derived species in rat chondrocyte: lack of contribution to loss of cartilage anabolism. Nédélec E; Abid A; Cipolletta C; Presle N; Terlain B; Netter P; Jouzeau J Biochem Pharmacol; 2001 Apr; 61(8):965-78. PubMed ID: 11286988 [TBL] [Abstract][Full Text] [Related]
12. Role of inducible nitric oxide synthase and cyclooxygenase-2 in endotoxin-induced cerebral hyperemia. Okamoto H; Ito O; Roman RJ; Hudetz AG Stroke; 1998 Jun; 29(6):1209-18. PubMed ID: 9626296 [TBL] [Abstract][Full Text] [Related]
13. Involvement of cyclooxygenase-derived prostaglandin E2 and nitric oxide in the protection of rat pancreas afforded by low dose of lipopolysaccharide. Jaworek J; Bonior J; Tomaszewska R; Jachimczak B; Kot M; Bielański W; Pawlik WW; Sendur R; Stachura J; Konturek PC; Konturek SJ J Physiol Pharmacol; 2001 Mar; 52(1):107-26. PubMed ID: 11321505 [TBL] [Abstract][Full Text] [Related]
14. Impaired cAMP production in human airway smooth muscle cells by bradykinin: role of cyclooxygenase products. Pang L; Holland E; Knox AJ Am J Physiol; 1998 Aug; 275(2):L322-9. PubMed ID: 9700093 [TBL] [Abstract][Full Text] [Related]
15. Endotoxin augments cerebral hyperemic response to halothane by inducing nitric oxide synthase and cyclooxygenase. Okamoto H; Roman RJ; Kampine JP; Hudetz AG Anesth Analg; 2000 Oct; 91(4):896-903. PubMed ID: 11004044 [TBL] [Abstract][Full Text] [Related]
16. Free radicals generated by xanthine/xanthine oxidase system augment nitric oxide synthase (NOS) and cyclooxygenase (COX)-independent component of bradykinin-induced vasodilatation in the isolated guinea pig heart. Kozlovski VI; Olszanecki R; Chlopicki S Pharmacol Rep; 2006; 58(3):405-12. PubMed ID: 16845215 [TBL] [Abstract][Full Text] [Related]
17. 24R,25-(OH)(2)D(3) mediates its membrane receptor-dependent effects on protein kinase C and alkaline phosphatase via phospholipase A(2) and cyclooxygenase-1 but not cyclooxygenase-2 in growth plate chondrocytes. Schwartz Z; Sylvia VL; Del Toro F; Hardin RR; Dean DD; Boyan BD J Cell Physiol; 2000 Mar; 182(3):390-401. PubMed ID: 10653606 [TBL] [Abstract][Full Text] [Related]
18. Selective inhibitors differentially affect cyclooxygenase-dependent pial arteriolar responses in newborn pigs. Domoki F; Nagy K; Temesvári P; Bari F Pediatr Res; 2005 Jun; 57(6):853-7. PubMed ID: 15845634 [TBL] [Abstract][Full Text] [Related]
19. Cyclooxygenase-2 participates in tubular flow-dependent afferent arteriolar tone: interaction with neuronal NOS. Ichihara A; Imig JD; Inscho EW; Navar LG Am J Physiol; 1998 Oct; 275(4):F605-12. PubMed ID: 9755132 [TBL] [Abstract][Full Text] [Related]
20. Cyclooxygenase-2-dependent superoxide generation contributes to age-dependent impairment of G protein-mediated cerebrovasodilation. Armstead WM Anesthesiology; 2003 Jun; 98(6):1378-83. PubMed ID: 12766646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]