BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11299384)

  • 1. Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants.
    Cassán F; Bottini R; Schneider G; Piccoli P
    Plant Physiol; 2001 Apr; 125(4):2053-8. PubMed ID: 11299384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Azospirillum spp. metabolize [17,17-2H2]gibberellin A20 to [17,17-2H2]gibberellin A1 in vivo in dy rice mutant seedlings.
    Cassán FD; Lucangeli CD; Bottini R; Piccoli PN
    Plant Cell Physiol; 2001 Jul; 42(7):763-7. PubMed ID: 11479384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Metabolism of Gibberellin A20 to Gibberellin A1 by Tall and Dwarf Mutants of Oryza sativa and Arabidopsis thaliana.
    Kobayashi M; Gaskin P; Spray CR; Phinney BO; MacMillan J
    Plant Physiol; 1994 Dec; 106(4):1367-1372. PubMed ID: 12232414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.
    Rodriguez H; Gonzalez T; Goire I; Bashan Y
    Naturwissenschaften; 2004 Nov; 91(11):552-5. PubMed ID: 15502903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering D-glucose utilization in Azospirillum brasilense Sp7 promotes rice root colonization.
    Singh VS; Dubey BK; Rai S; Singh SP; Tripathi AK
    Appl Microbiol Biotechnol; 2022 Dec; 106(23):7891-7903. PubMed ID: 36334127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gibberellin biosynthesis: metabolic evidence for three steps in the early 13-hydroxylation pathway of rice.
    Kobayashi M; MacMillan J; Phinney B; Gaskin P; Spray CR; Hedden P
    Phytochemistry; 2000 Oct; 55(4):317-21. PubMed ID: 11117879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gibberellins and gravitropism in maize shoots: endogenous gibberellin-like substances and movement and metabolism of [3H]Gibberellin A20.
    Rood SB; Kaufman PB; Abe H; Pharis RP
    Plant Physiol; 1987; 83(3):645-51. PubMed ID: 11539033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense.
    Martínez-Morales LJ; Soto-Urzúa L; Baca BE; Sánchez-Ahédo JA
    FEMS Microbiol Lett; 2003 Nov; 228(2):167-73. PubMed ID: 14638420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of saline tolerant Azospirillum species on the growth parameters of mangrove seedlings.
    Ravikumar S; Ignatiammal ST; Gnanadesigan M; Kalaiarasi A
    J Environ Biol; 2012 Sep; 33(5):933-9. PubMed ID: 23734462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-seq reveals differentially expressed genes in rice (Oryza sativa) roots during interactions with plant-growth promoting bacteria, Azospirillum brasilense.
    Thomas J; Kim HR; Rahmatallah Y; Wiggins G; Yang Q; Singh R; Glazko G; Mukherjee A
    PLoS One; 2019; 14(5):e0217309. PubMed ID: 31120967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of a calcium-dependent protein kinase involved in the Azospirillum growth promotion in rice.
    Ribaudo CM; Curá JA; Cantore ML
    World J Microbiol Biotechnol; 2017 Feb; 33(2):22. PubMed ID: 28044270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling growth and biochemical activities of Azospirillum spp.
    Kefalogianni I; Aggelis G
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):352-7. PubMed ID: 11935187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer of a plant chitinase gene into a nitrogen-fixing Azospirillum and study of its expression.
    Jayaraj J; Muthukrishnan S; Liang GH
    Can J Microbiol; 2004 Jul; 50(7):509-13. PubMed ID: 15381976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common gene expression patterns are observed in rice roots during associations with plant growth-promoting bacteria, Herbaspirillum seropedicae and Azospirillum brasilense.
    Wiggins G; Thomas J; Rahmatallah Y; Deen C; Haynes A; Degon Z; Glazko G; Mukherjee A
    Sci Rep; 2022 May; 12(1):8827. PubMed ID: 35614083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis and reconjugation of gibberellin A20 glucosyl ester by seedlings of Zea mays L.
    Schneider G; Jensen E; Spray CR; Phinney BO
    Proc Natl Acad Sci U S A; 1992 Sep; 89(17):8045-8. PubMed ID: 1518829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR.
    Stets MI; Alqueres SM; Souza EM; Pedrosa Fde O; Schmid M; Hartmann A; Cruz LM
    Appl Environ Microbiol; 2015 Oct; 81(19):6700-9. PubMed ID: 26187960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Azospirillum sp. strain B510 enhances rice growth and yield.
    Isawa T; Yasuda M; Awazaki H; Minamisawa K; Shinozaki S; Nakashita H
    Microbes Environ; 2010; 25(1):58-61. PubMed ID: 21576855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dual Function of OsSWEET3a as a Gibberellin and Glucose Transporter Is Important for Young Shoot Development in Rice.
    Morii M; Sugihara A; Takehara S; Kanno Y; Kawai K; Hobo T; Hattori M; Yoshimura H; Seo M; Ueguchi-Tanaka M
    Plant Cell Physiol; 2020 Dec; 61(11):1935-1945. PubMed ID: 33104219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome wide profiling of Azospirillum lipoferum 4B gene expression during interaction with rice roots.
    Drogue B; Sanguin H; Borland S; Prigent-Combaret C; Wisniewski-Dyé F
    FEMS Microbiol Ecol; 2014 Feb; 87(2):543-55. PubMed ID: 24283406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Friends or foes in the rhizosphere: traits of fluorescent Pseudomonas that hinder Azospirillum brasilense growth and root colonization.
    Maroniche GA; Diaz PR; Borrajo MP; Valverde CF; Creus CM
    FEMS Microbiol Ecol; 2018 Dec; 94(12):. PubMed ID: 30299474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.