BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11300216)

  • 21. An automatic method for the identification and interpretation of clustered microcalcifications in mammograms.
    Schmidt F; Sorantin E; Szepesvàri C; Graif E; Becker M; Mayer H; Hartwagner K
    Phys Med Biol; 1999 May; 44(5):1231-43. PubMed ID: 10368015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breast cancer detection and classification in digital mammography based on Non-Subsampled Contourlet Transform (NSCT) and Super Resolution.
    Pak F; Kanan HR; Alikhassi A
    Comput Methods Programs Biomed; 2015 Nov; 122(2):89-107. PubMed ID: 26206406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of psychophysical similarity measures for selection of similar images in the diagnosis of clustered microcalcifications on mammograms.
    Muramatsu C; Li Q; Schmidt R; Shiraishi J; Doi K
    Med Phys; 2008 Dec; 35(12):5695-702. PubMed ID: 19175126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radiomics based detection and characterization of suspicious lesions on full field digital mammograms.
    Sapate SG; Mahajan A; Talbar SN; Sable N; Desai S; Thakur M
    Comput Methods Programs Biomed; 2018 Sep; 163():1-20. PubMed ID: 30119844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Features of prospectively overlooked computer-aided detection marks on prior screening digital mammograms in women with breast cancer.
    Cho N; Kim SJ; Choi HY; Lyou CY; Moon WK
    AJR Am J Roentgenol; 2010 Nov; 195(5):1276-82. PubMed ID: 20966340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network.
    Chan HP; Sahiner B; Petrick N; Helvie MA; Lam KL; Adler DD; Goodsitt MM
    Phys Med Biol; 1997 Mar; 42(3):549-67. PubMed ID: 9080535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A genetic algorithm design for microcalcification detection and classification in digital mammograms.
    Jiang J; Yao B; Wason AM
    Comput Med Imaging Graph; 2007 Jan; 31(1):49-61. PubMed ID: 17049809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An approach to the detection of lesions in mammograms using fuzzy image processing.
    Bayram B; Acar U
    J Int Med Res; 2007; 35(6):790-5. PubMed ID: 18034992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Detection of microcalcifications in digital mammograms based on dual-threshold].
    Huang Q; He D; Wu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1189-92, 1205. PubMed ID: 19024473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer-aided detection in full-field digital mammography: sensitivity and reproducibility in serial examinations.
    Kim SJ; Moon WK; Cho N; Cha JH; Kim SM; Im JG
    Radiology; 2008 Jan; 246(1):71-80. PubMed ID: 18096530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Independent evaluation of computer classification of malignant and benign calcifications in full-field digital mammograms.
    Rana RS; Jiang Y; Schmidt RA; Nishikawa RM; Liu B
    Acad Radiol; 2007 Mar; 14(3):363-70. PubMed ID: 17307670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.
    Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K
    Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new approach to the detection of lesions in mammography using fuzzy clustering.
    Wang Y; Shi H; Ma S
    J Int Med Res; 2011; 39(6):2256-63. PubMed ID: 22289541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decision support system for breast cancer detection using mammograms.
    Ganesan K; Acharya RU; Chua CK; Min LC; Mathew B; Thomas AK
    Proc Inst Mech Eng H; 2013 Jul; 227(7):721-32. PubMed ID: 23636749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computer-aided detection of clustered microcalcifications: an improved method for grouping detected signals.
    Nishikawa RM; Giger ML; Doi K; Vyborny CJ; Schmidt RA
    Med Phys; 1993; 20(6):1661-6. PubMed ID: 8309438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing parameters for computer-aided diagnosis of microcalcifications at mammography.
    Leichter I; Lederman R; Buchbinder S; Bamberger P; Novak B; Fields S
    Acad Radiol; 2000 Jun; 7(6):406-12. PubMed ID: 10845399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An improved method of region grouping for microcalcification detection in digital mammograms.
    Qian W; Mao F; Sun X; Zhang Y; Song D; Clarke RA
    Comput Med Imaging Graph; 2002; 26(6):361-8. PubMed ID: 12453502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Location of mammograms ROI's and reduction of false-positive.
    Salazar-Licea LA; Pedraza-Ortega JC; Pastrana-Palma A; Aceves-Fernandez MA
    Comput Methods Programs Biomed; 2017 May; 143():97-111. PubMed ID: 28391823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microcalcification detection based on wavelet domain hidden markov tree model: study for inclusion to computer aided diagnostic prompting system.
    Regentova E; Zhang L; Zheng J; Veni G
    Med Phys; 2007 Jun; 34(6):2206-19. PubMed ID: 17654922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories.
    Vadivel A; Surendiran B
    Comput Biol Med; 2013 May; 43(4):259-67. PubMed ID: 23414779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.