BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11300216)

  • 61. Computer-aided diagnosis of breast cancer in mammography: evidence and potential.
    Jiang Y
    Technol Cancer Res Treat; 2002 Jun; 1(3):211-6. PubMed ID: 12622514
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evaluation of a breast cancer computer aided diagnosis system.
    Frigas A; Kapsimalakou S; Spyrou G; Koufopoulos K; Vassilaros S; Chatzimichael A; Mantas J; Ligomenides P
    Stud Health Technol Inform; 2006; 124():631-6. PubMed ID: 17108587
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Segmentation algorithms for detecting microcalcifications in mammograms.
    Bankman IN; Nizialek T; Simon I; Gatewood OB; Weinberg IN; Brody WR
    IEEE Trans Inf Technol Biomed; 1997 Jun; 1(2):141-9. PubMed ID: 11020816
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The performance of computer-aided detection when analyzing prior mammograms of newly detected breast cancers with special focus on the time interval from initial imaging to detection.
    Malich A; Schmidt S; Fischer DR; Facius M; Kaiser WA
    Eur J Radiol; 2009 Mar; 69(3):574-8. PubMed ID: 18337045
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Downgrading BIRADS 3 to BIRADS 2 category using a computer-aided microcalcification analysis and risk assessment system for early breast cancer.
    Giannakopoulou G; Spyrou GM; Antaraki A; Andreadis I; Koulocheri D; Zagouri F; Nonni A; Filippakis GM; Nikita KS; Ligomenides PA; Zografos GC
    Comput Biol Med; 2010; 40(11-12):853-9. PubMed ID: 20950798
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Impact on breast cancer diagnosis in a multidisciplinary unit after the incorporation of mammography digitalization and computer-aided detection systems.
    Romero C; Varela C; Muñoz E; Almenar A; Pinto JM; Botella M
    AJR Am J Roentgenol; 2011 Dec; 197(6):1492-7. PubMed ID: 22109307
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Classification of mammographic masses using generalized dynamic fuzzy neural networks.
    Lim WK; Er MJ
    Med Phys; 2004 May; 31(5):1288-95. PubMed ID: 15191321
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Reproducibility of computer-aided detection marks in digital mammography.
    Kim SJ; Moon WK; Cho N; Cha JH; Kim SM; Im JG
    Korean J Radiol; 2007; 8(3):198-205. PubMed ID: 17554186
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Breast Microcalcification Diagnosis Using Deep Convolutional Neural Network from Digital Mammograms.
    Cai H; Huang Q; Rong W; Song Y; Li J; Wang J; Chen J; Li L
    Comput Math Methods Med; 2019; 2019():2717454. PubMed ID: 30944574
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The use of an interactive software program for quantitative characterization of microcalcifications on digitized film-screen mammograms.
    Leichter I; Lederman R; Bamberger P; Novak B; Fields S; Buchbinder SS
    Invest Radiol; 1999 Jun; 34(6):394-400. PubMed ID: 10353031
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optimal neural network architecture selection: improvement in computerized detection of microcalcifications.
    Gurcan MN; Chan HP; Sahiner B; Hadjiiski L; Petrick N; Helvie MA
    Acad Radiol; 2002 Apr; 9(4):420-9. PubMed ID: 11942656
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Computerized detection of masses in digital mammograms: analysis of bilateral subtraction images.
    Yin FF; Giger ML; Doi K; Metz CE; Vyborny CJ; Schmidt RA
    Med Phys; 1991; 18(5):955-63. PubMed ID: 1961160
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Computer-aided detection in digital mammography: false-positive marks and their reproducibility in negative mammograms.
    Kim SJ; Moon WK; Seong MH; Cho N; Chang JM
    Acta Radiol; 2009 Nov; 50(9):999-1004. PubMed ID: 19863409
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Detection of single and clustered microcalcifications in mammograms using fractals models and neural networks.
    Bocchi L; Coppini G; Nori J; Valli G
    Med Eng Phys; 2004 May; 26(4):303-12. PubMed ID: 15121055
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms.
    Zhang W; Doi K; Giger ML; Nishikawa RM; Schmidt RA
    Med Phys; 1996 Apr; 23(4):595-601. PubMed ID: 8860907
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The effect of feature selection methods on computer-aided detection of masses in mammograms.
    Hupse R; Karssemeijer N
    Phys Med Biol; 2010 May; 55(10):2893-904. PubMed ID: 20427855
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Extraction of microcalcifications in digital mammograms using regional watershed.
    Bhajammanavar VM; Keong KC; Krishnan SM
    J Digit Imaging; 2000 May; 13(2 Suppl 1):127-9. PubMed ID: 10847380
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Quantitative comparison of clustered microcalcifications in for-presentation and for-processing mammograms in full-field digital mammography.
    Wang J; Nishikawa RM; Yang Y
    Med Phys; 2017 Jul; 44(7):3726-3738. PubMed ID: 28477395
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks.
    Bandeira Diniz JO; Bandeira Diniz PH; Azevedo Valente TL; Corrêa Silva A; de Paiva AC; Gattass M
    Comput Methods Programs Biomed; 2018 Mar; 156():191-207. PubMed ID: 29428071
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A CADx scheme for mammography empowered with topological information from clustered microcalcifications' atlases.
    Andreadis II; Spyrou GM; Nikita KS
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):166-73. PubMed ID: 25073178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.