BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11300796)

  • 1. MgATP-dependent activation by phosphoenolpyruvate of the E187A mutant of Escherichia coli phosphofructokinase.
    Pham AS; Reinhart GD
    Biochemistry; 2001 Apr; 40(13):4150-8. PubMed ID: 11300796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistent binding of MgADP to the E187A mutant of Escherichia coli phosphofructokinase in the absence of allosteric effects.
    Pham AS; Janiak-Spens F; Reinhart GD
    Biochemistry; 2001 Apr; 40(13):4140-9. PubMed ID: 11300795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Failure of a two-state model to describe the influence of phospho(enol)pyruvate on phosphofructokinase from Escherichia coli.
    Johnson JL; Reinhart GD
    Biochemistry; 1997 Oct; 36(42):12814-22. PubMed ID: 9335538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MgATP and fructose 6-phosphate interactions with phosphofructokinase from Escherichia coli.
    Johnson JL; Reinhart GD
    Biochemistry; 1992 Nov; 31(46):11510-8. PubMed ID: 1445885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of MgADP on phosphofructokinase from Escherichia coli. Elucidation of coupling interactions with both substrates.
    Johnson JL; Reinhart GD
    Biochemistry; 1994 Mar; 33(9):2635-43. PubMed ID: 8117726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium binding studies of a tryptophan-shifted mutant of phosphofructokinase from Bacillus stearothermophilus.
    Riley-Lovingshimer MR; Reinhart GD
    Biochemistry; 2001 Mar; 40(9):3002-8. PubMed ID: 11258913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible ligand-induced dissociation of a tryptophan-shift mutant of phosphofructokinase from Bacillus stearothermophilus.
    Riley-Lovingshimer MR; Ronning DR; Sacchettini JC; Reinhart GD
    Biochemistry; 2002 Oct; 41(43):12967-74. PubMed ID: 12390023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady-state fluorescence of Escherichia coli phosphofructokinase reveals a regulatory role for ATP.
    Berger SA; Evans PR
    Biochemistry; 1991 Aug; 30(34):8477-80. PubMed ID: 1832014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-induced conformational transitions in Escherichia coli phosphofructokinase 2: evidence for an allosteric site for MgATP2-.
    Guixé V; Rodríguez PH; Babul J
    Biochemistry; 1998 Sep; 37(38):13269-75. PubMed ID: 9748334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disentangling the web of allosteric communication in a homotetramer: heterotropic inhibition in phosphofructokinase from Escherichia coli.
    Fenton AW; Reinhart GD
    Biochemistry; 2009 Dec; 48(51):12323-8. PubMed ID: 19905012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of ligands on the aggregation of the normal and mutant forms of phosphofructokinase 2 of Escherichia coli.
    Guixé V; Babul J
    Arch Biochem Biophys; 1988 Aug; 264(2):519-24. PubMed ID: 2969698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perturbation of the quaternary structure and allosteric behavior of rat liver phosphofructokinase by polyethylene glycol.
    Reinhart GD; Hartleip SB
    Arch Biochem Biophys; 1987 Oct; 258(1):65-76. PubMed ID: 2959201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of substrate contact residues important for the allosteric regulation of phosphofructokinase from Eschericia coli.
    Fenton AW; Paricharttanakul NM; Reinhart GD
    Biochemistry; 2003 Jun; 42(21):6453-9. PubMed ID: 12767227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic characteristics of phosphofructokinase from Bacillus stearothermophilus: MgATP nonallosterically inhibits the enzyme.
    Byrnes M; Zhu X; Younathan ES; Chang SH
    Biochemistry; 1994 Mar; 33(11):3424-31. PubMed ID: 8136379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric regulation in phosphofructokinase from the extreme thermophile Thermus thermophilus.
    McGresham MS; Lovingshimer M; Reinhart GD
    Biochemistry; 2014 Jan; 53(1):270-8. PubMed ID: 24328040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reevaluation of the accepted allosteric mechanism of phosphofructokinase from Bacillus stearothermophilus.
    Kimmel JL; Reinhart GD
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):3844-9. PubMed ID: 10759544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conformational transition involved in antagonistic substrate binding to the allosteric phosphofructokinase from Escherichia coli.
    Deville-Bonne D; Garel JR
    Biochemistry; 1992 Feb; 31(6):1695-700. PubMed ID: 1531298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing an allosterically locked phosphofructokinase.
    Kundrot CE; Evans PR
    Biochemistry; 1991 Feb; 30(6):1478-84. PubMed ID: 1825177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical modification of SH groups of E. coli phosphofructokinase-2 induces subunit dissociation: monomers are inactive but preserve ligand binding properties.
    Guixé V
    Arch Biochem Biophys; 2000 Apr; 376(2):313-9. PubMed ID: 10775417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of residue 161 in the allosteric transitions of two bacterial phosphofructokinases.
    Auzat I; Byrnes WM; Garel JR; Chang SH
    Biochemistry; 1995 May; 34(21):7062-8. PubMed ID: 7766616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.