These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 11301158)
1. Non-synaptic ion channels in insects--basic properties of currents and their modulation in neurons and skeletal muscles. Wicher D; Walther C; Wicher C Prog Neurobiol; 2001 Aug; 64(5):431-525. PubMed ID: 11301158 [TBL] [Abstract][Full Text] [Related]
2. Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron. Ryglewski S; Duch C J Neurophysiol; 2009 Dec; 102(6):3673-88. PubMed ID: 19828724 [TBL] [Abstract][Full Text] [Related]
3. [Potential-gated currents in isolated spinal cord neurons of the river lamprey Lampetra fluviatilis]. Batueva IV; Tsvetkov EA; Buchanan JT; Veselkin NP Zh Evol Biokhim Fiziol; 1996; 32(3):267-83. PubMed ID: 9148614 [TBL] [Abstract][Full Text] [Related]
4. Electrical activity and calcium influx regulate ion channel development in embryonic Xenopus skeletal muscle. Linsdell P; Moody WJ J Neurosci; 1995 Jun; 15(6):4507-14. PubMed ID: 7790920 [TBL] [Abstract][Full Text] [Related]
5. Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules. Sakagami K; Wu DM; Puro DG J Physiol; 1999 Dec; 521 Pt 3(Pt 3):637-50. PubMed ID: 10601495 [TBL] [Abstract][Full Text] [Related]
6. Peptidergic counter-regulation of Ca(2+)- and Na(+)-dependent K(+) currents modulates the shape of action potentials in neurosecretory insect neurons. Wicher D; Berlau J; Walther C; Borst A J Neurophysiol; 2006 Jan; 95(1):311-22. PubMed ID: 16177173 [TBL] [Abstract][Full Text] [Related]
8. Contributions of voltage- and Ca2+-activated conductances to GABA-induced depolarization in spider mechanosensory neurons. Panek I; Höger U; French AS; Torkkeli PH J Neurophysiol; 2008 Apr; 99(4):1596-606. PubMed ID: 18216223 [TBL] [Abstract][Full Text] [Related]
9. Expression of ion channels and mutational effects in giant Drosophila neurons differentiated from cell division-arrested embryonic neuroblasts. Saito M; Wu CF J Neurosci; 1991 Jul; 11(7):2135-50. PubMed ID: 1712379 [TBL] [Abstract][Full Text] [Related]
10. Ca2+ currents in central insect neurons: electrophysiological and pharmacological properties. Wicher D; Penzlin H J Neurophysiol; 1997 Jan; 77(1):186-99. PubMed ID: 9120560 [TBL] [Abstract][Full Text] [Related]
11. Dorsal unpaired median neurones in the insect central nervous system: towards a better understanding of the ionic mechanisms underlying spontaneous electrical activity. Grolleau F; Lapied B J Exp Biol; 2000 Jun; 203(Pt 11):1633-48. PubMed ID: 10804154 [TBL] [Abstract][Full Text] [Related]
12. Voltage-gated ionic currents in an identified modulatory cell type controlling molluscan feeding. Staras K; Gyóri J; Kemenes G Eur J Neurosci; 2002 Jan; 15(1):109-19. PubMed ID: 11860511 [TBL] [Abstract][Full Text] [Related]
13. Receptor and voltage-operated ion channels in the central nervous system. Antkiewicz-Michaluk L Pol J Pharmacol; 1995; 47(3):253-64. PubMed ID: 8714758 [TBL] [Abstract][Full Text] [Related]
14. Distribution of ionic currents in the soma and growing region of an identified peptidergic neuron in defined culture. Meyers DE J Neurophysiol; 1993 Feb; 69(2):406-15. PubMed ID: 7681474 [TBL] [Abstract][Full Text] [Related]
16. Gabapentin actions on ligand- and voltage-gated responses in cultured rodent neurons. Rock DM; Kelly KM; Macdonald RL Epilepsy Res; 1993 Oct; 16(2):89-98. PubMed ID: 7505742 [TBL] [Abstract][Full Text] [Related]
17. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons. Gao BX; Ziskind-Conhaim L J Neurophysiol; 1998 Dec; 80(6):3047-61. PubMed ID: 9862905 [TBL] [Abstract][Full Text] [Related]
18. Peptidergic modulation of insect voltage-gated Ca(2+) currents: role of resting Ca(2+) current and protein kinases A and C. Wicher D J Neurophysiol; 2001 Nov; 86(5):2353-62. PubMed ID: 11698525 [TBL] [Abstract][Full Text] [Related]
19. Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ. Rothe T; Jüttner R; Bähring R; Grantyn R J Neurobiol; 1999 Feb; 38(2):191-206. PubMed ID: 10022566 [TBL] [Abstract][Full Text] [Related]