BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11302446)

  • 1. Reversed-phase high-performance liquid chromatography of peptides of porcine pepsin prepared by the use of various forms of immobilized alpha-chymotrypsin.
    Vanková H; Kucerová Z; Turková J
    J Chromatogr B Biomed Sci Appl; 2001 Mar; 753(1):37-43. PubMed ID: 11302446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of reversed-phase high-performance liquid chromatography and capillary zone electrophoresis to the peptide mapping of pepsin isoenzymes.
    Hynek R; Kasicka V; Kucerová Z; Kás J
    J Chromatogr B Biomed Appl; 1996 May; 681(1):37-45. PubMed ID: 8798910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide maps of five human pepsin isoenzymes and other aspartic proteinases.
    Jones AT; Roberts NB
    J Chromatogr; 1992 May; 599(1-2):179-84. PubMed ID: 1618988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic bead cellulose as a suitable support for immobilization of α-chymotrypsin.
    Prikryl P; Lenfeld J; Horak D; Ticha M; Kucerova Z
    Appl Biochem Biotechnol; 2012 Sep; 168(2):295-305. PubMed ID: 22736276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of pathological changes of proteins by peptide mapping after protein digestion by use of oriented immobilized proteinases.
    Turková J; Kucerová Z; Benes MJ
    J Mol Recognit; 1996; 9(5-6):360-3. PubMed ID: 9174910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of recombinant and pituitary-derived bovine and porcine growth hormones by peptide mass mapping.
    Pinel G; André F; Le Bizec B
    J Agric Food Chem; 2004 Feb; 52(3):407-14. PubMed ID: 14759125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison between the matrices alpha-cyano-4-hydroxycinnamic acid and 4-chloro-alpha-cyanocinnamic acid for trypsin, chymotrypsin, and pepsin digestions by MALDI-TOF mass spectrometry.
    Jaskolla TW; Papasotiriou DG; Karas M
    J Proteome Res; 2009 Jul; 8(7):3588-97. PubMed ID: 19435303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Electrophoretic analysis on the proteolytic decomposition of of FSH preparations].
    Khalaf H; Neumann U; Rimpler M
    Dtsch Tierarztl Wochenschr; 1995 Oct; 102(10):396-9. PubMed ID: 8591740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of corticotropin- and melanotropin-related peptides from the neurointermediary lobe of the rat pituitary by reversed-phase liquid chromatography.
    Browne CA; Bennett HP; Solomon S
    Biochemistry; 1981 Aug; 20(16):4538-46. PubMed ID: 6271168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidigestion in continuous flow tandem protease-immobilized microreactors for proteomic analysis.
    Yamaguchi H; Miyazaki M; Kawazumi H; Maeda H
    Anal Biochem; 2010 Dec; 407(1):12-8. PubMed ID: 20673753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pepsin immobilization on an aldehyde-modified polymethacrylate monolith and its application for protein analysis.
    Han W; Yamauchi M; Hasegawa U; Noda M; Fukui K; van der Vlies AJ; Uchiyama S; Uyama H
    J Biosci Bioeng; 2015 May; 119(5):505-10. PubMed ID: 25468419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of fluorination on proteolytic stability of peptides: a case study with α-chymotrypsin and pepsin.
    Asante V; Mortier J; Wolber G; Koksch B
    Amino Acids; 2014 Dec; 46(12):2733-44. PubMed ID: 25193166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic cleavage and HPLC peptide mapping of proteins.
    Williams KR; Stone KL
    Mol Biotechnol; 1997 Oct; 8(2):155-67. PubMed ID: 9406186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic study of the appearance of an anti-bacterial peptide in the course of bovine haemoglobin peptic hydrolysis.
    Choisnard L; Froidevaux R; Nedjar-Arroume N; Lignot B; Vercaigne-Marko D; Krier F; Dhulster P; Guillochon D
    Biotechnol Appl Biochem; 2002 Dec; 36(3):187-94. PubMed ID: 12452802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel catalysis by porcine pepsin in debranching guar galactomannan.
    Shobha MS; Gowda LR; Tharanathan RN
    Carbohydr Polym; 2014 Feb; 102():615-21. PubMed ID: 24507326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of pepsin with aromatic amino acids and their derivatives immobilized to Sepharose.
    Frýdlová J; Kucerová Z; Tichá M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Feb; 863(1):135-40. PubMed ID: 18255363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of pepsin phosphorylation using immobilized metal affinity chromatography.
    Novotna L; Hruby M; Benes MJ; Kucerova Z
    J Sep Sci; 2008 Jun; 31(10):1662-8. PubMed ID: 18446814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methodology for purification of large hydrophobic peptides by high-performance liquid chromatography.
    Grandier-Vazeille X; Tetaert D
    J Chromatogr; 1984 Jul; 296():301-8. PubMed ID: 6480745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance liquid chromatography of casein hydrolysates phosphorylated and dephosphorylated. I. Peptide mapping.
    Lemieux L; Amiot J
    J Chromatogr; 1990 Nov; 519(2):299-321. PubMed ID: 2262528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of heptapeptides containing D-amino acid residues immobilized to magnetic particles and Sepharose for the study of binding properties of gastric aspartic proteases.
    Rajčanová M; Tichá M; Kučerová Z
    J Sep Sci; 2012 Aug; 35(15):1899-905. PubMed ID: 22753309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.