These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 11302490)

  • 21. Antimycoplasmal activities of the pseudomonic acids and structure-activity relationships of monic acid A derivatives.
    Banks RM; Donald AC; Hannan PC; O'Hanlon PJ; Rogers NH
    J Antibiot (Tokyo); 1988 May; 41(5):609-13. PubMed ID: 3133344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mixing and matching genes of marine and terrestrial origin in the biosynthesis of the mupirocin antibiotics.
    Wang L; Song Z; Race PR; Spencer J; Simpson TJ; Crump MP; Willis CL
    Chem Sci; 2020 May; 11(20):5221-5226. PubMed ID: 34122978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic basis of "hybridity" in thiomarinol biosynthesis.
    Dunn ZD; Wever WJ; Economou NJ; Bowers AA; Li B
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5137-41. PubMed ID: 25726835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemistry of bleomycin. XXVI. Biosynthetic study using 13C-enriched precursors.
    Nakatani T; Fujii A; Naganawa H; Takita T; Umezawa H
    J Antibiot (Tokyo); 1980 Jul; 33(7):717-21. PubMed ID: 6157666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A unified strategy for the synthesis of the C1-C14 fragment of marinolic acids, mupirocins, pseudomonic acids and thiomarinols: total synthesis of pseudomonic acid methyl monate C.
    Sridhar Y; Srihari P
    Org Biomol Chem; 2014 May; 12(18):2950-9. PubMed ID: 24691713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and activity of nonhydrolyzable pseudomonic acid analogues.
    Klein LL; Yeung CM; Kurath P; Mao JC; Fernandes PB; Lartey PA; Pernet AG
    J Med Chem; 1989 Jan; 32(1):151-60. PubMed ID: 2491891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase.
    Hughes J; Mellows G
    Biochem J; 1980 Oct; 191(1):209-19. PubMed ID: 6258580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic pathways leading from amino acids to vitamin B12 in Propionibacterium shermanii, and the sources of the seven methyl carbons.
    Iida K; Kajiwara M
    FEBS J; 2007 Oct; 274(19):5090-5. PubMed ID: 17803685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enantioselective deprotonation of meso-cycloheptanone derivative: application to the synthesis of a potential intermediate for pseudomonic acid B.
    Honda T; Kimura N
    Org Lett; 2002 Dec; 4(25):4567-70. PubMed ID: 12465939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Segmental motion in pseudomonic acid A: a carbon-13 spin-lattice relaxation time study at two field strengths.
    Everett JR; Tyler JW
    J Antibiot (Tokyo); 1984 Apr; 37(4):363-7. PubMed ID: 6427166
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two novel antibiotics, Sch 419558 and Sch 419559, produced by Pseudomonas fluorescens: effect on activity by overexpression of RpoE.
    Yang SW; Xu L; Mierzwa R; He L; Terracciano J; Patel M; Gullo V; Black T; Zhao W; Chan TM; Chu M
    Bioorg Med Chem; 2004 Jun; 12(12):3333-8. PubMed ID: 15158801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosynthesis of antibiotic 1233A (F-244) and preparation of [14C]1233A.
    Kumagai H; Tomoda H; Omura S
    J Antibiot (Tokyo); 1992 Apr; 45(4):563-7. PubMed ID: 1350579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosynthesis of benastatin A.
    Aoyama T; Naganawa H; Muraoka Y; Aoyagi T; Takeuchi T
    J Antibiot (Tokyo); 1992 Nov; 45(11):1767-72. PubMed ID: 1468985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Karalicin, a new biologically active compound from Pseudomonas fluorescens/putida. I. Production, isolation, physico-chemical properties and structure elucidation.
    Lampis G; Deidda D; Maullu C; Petruzzelli S; Pompei R; Monache FD; Satta G
    J Antibiot (Tokyo); 1996 Mar; 49(3):260-2. PubMed ID: 8626241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sperabillins, new antibacterial antibiotics with potent in vivo activity. Taxonomy, fermentation, isolation and biological activity.
    Katayama N; Nozaki Y; Tsubotani S; Kondo M; Harada S; Ono H
    J Antibiot (Tokyo); 1992 Jan; 45(1):10-9. PubMed ID: 1372306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methionine degradation by Pseudomonas fluorescens UK1 and its methionine-utilizing mutant.
    Laakso S; Söderling E; Nurmikko V
    J Gen Microbiol; 1976 Jun; 94(2):305-12. PubMed ID: 820833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fatty acid synthesis pathway provides lipid precursors for rhamnolipid biosynthesis in Burkholderia thailandensis E264.
    Irorere VU; Smyth TJ; Cobice D; McClean S; Marchant R; Banat IM
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):6163-6174. PubMed ID: 29752487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-vitro activity of mupirocin ('pseudomonic acid') against clinical isolates of Staphylococcus aureus.
    Casewell MW; Hill RL
    J Antimicrob Chemother; 1985 May; 15(5):523-31. PubMed ID: 3924877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons.
    Tobin KM; O'Connor KE
    FEMS Microbiol Lett; 2005 Dec; 253(1):111-8. PubMed ID: 16260095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pseudomonic acid--a new antibiotic for skin infections.
    Reilly GD; Spencer RC
    J Antimicrob Chemother; 1984 Mar; 13(3):295-8. PubMed ID: 6427173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.