These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 11302726)
1. Important role of tetrahydrobiopterin in no complex formation and interdomain electron transfer in neuronal nitric-oxide synthase. Noguchi T; Sagami I; Daff S; Shimizu T Biochem Biophys Res Commun; 2001 Apr; 282(5):1092-7. PubMed ID: 11302726 [TBL] [Abstract][Full Text] [Related]
2. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms. Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894 [TBL] [Abstract][Full Text] [Related]
3. Stopped-flow analysis of CO and NO binding to inducible nitric oxide synthase. Abu-Soud HM; Wu C; Ghosh DK; Stuehr DJ Biochemistry; 1998 Mar; 37(11):3777-86. PubMed ID: 9521697 [TBL] [Abstract][Full Text] [Related]
4. Nitric oxide-generated P420 nitric oxide synthase: characterization and roles for tetrahydrobiopterin and substrate in protecting against or reversing the P420 conversion. Huang L; Abu-Soud HM; Hille R; Stuehr DJ Biochemistry; 1999 Feb; 38(6):1912-20. PubMed ID: 10026272 [TBL] [Abstract][Full Text] [Related]
5. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase. Berka V; Yeh HC; Gao D; Kiran F; Tsai AL Biochemistry; 2004 Oct; 43(41):13137-48. PubMed ID: 15476407 [TBL] [Abstract][Full Text] [Related]
6. Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases. Stuehr DJ; Wei CC; Wang Z; Hille R Dalton Trans; 2005 Nov; (21):3427-35. PubMed ID: 16234921 [TBL] [Abstract][Full Text] [Related]
7. Chiral recognition at the heme active site of nitric oxide synthase is markedly enhanced by L-arginine and 5,6,7,8-tetrahydrobiopterin. Nakano K; Sagami I; Daff S; Shimizu T Biochem Biophys Res Commun; 1998 Jul; 248(3):767-72. PubMed ID: 9704002 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the kinetics of CO binding to neuronal nitric oxide synthase by flash photolysis: dual effects of substrates, inhibitors, and tetrahydrobiopterin. Bengea S; Araki Y; Ito O; Igarashi J; Sagami I; Shimizu T J Inorg Biochem; 2004 Jul; 98(7):1210-6. PubMed ID: 15219987 [TBL] [Abstract][Full Text] [Related]
9. Azo reduction of methyl red by neuronal nitric oxide synthase: the important role of FMN in catalysis. Miyajima M; Sagami I; Daff S; Taiko Migita C; Shimizu T Biochem Biophys Res Commun; 2000 Sep; 275(3):752-8. PubMed ID: 10973794 [TBL] [Abstract][Full Text] [Related]
10. Structure of tetrahydrobiopterin tunes its electron transfer to the heme-dioxy intermediate in nitric oxide synthase. Wei CC; Wang ZQ; Arvai AS; Hemann C; Hille R; Getzoff ED; Stuehr DJ Biochemistry; 2003 Feb; 42(7):1969-77. PubMed ID: 12590583 [TBL] [Abstract][Full Text] [Related]
11. Formation of nitric oxide synthase-iron(II) nitrosoalkane complexes: severe restriction of access to the iron(II) site in the presence of tetrahydrobiopterin. Renodon A; Boucher JL; Wu C; Gachhui R; Sari MA; Mansuy D; Stuehr D Biochemistry; 1998 May; 37(18):6367-74. PubMed ID: 9572852 [TBL] [Abstract][Full Text] [Related]
12. Comparative functioning of dihydro- and tetrahydropterins in supporting electron transfer, catalysis, and subunit dimerization in inducible nitric oxide synthase. Presta A; Siddhanta U; Wu C; Sennequier N; Huang L; Abu-Soud HM; Erzurum S; Stuehr DJ Biochemistry; 1998 Jan; 37(1):298-310. PubMed ID: 9425051 [TBL] [Abstract][Full Text] [Related]
13. CO exchange of the oxyferrous complexes of endothelial nitric-oxide synthase oxygenase domain in the presence of 4-amino-tetrahydrobiopterin. Marchal S; Lange R; Sørlie M; Andersson KK; Gorren AC; Mayer B J Inorg Biochem; 2004 Jul; 98(7):1217-22. PubMed ID: 15219988 [TBL] [Abstract][Full Text] [Related]
14. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase. Knight K; Scrutton NS Biochem J; 2002 Oct; 367(Pt 1):19-30. PubMed ID: 12079493 [TBL] [Abstract][Full Text] [Related]
15. Two modes of binding of N-hydroxyguanidines to NO synthases: first evidence for the formation of iron-N-hydroxyguanidine complexes and key role of tetrahydrobiopterin in determining the binding mode. Lefèvre-Groboillot D; Frapart Y; Desbois A; Zimmermann JL; Boucher JL; Gorren AC; Mayer B; Stuehr DJ; Mansuy D Biochemistry; 2003 Apr; 42(13):3858-67. PubMed ID: 12667076 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity of flavin fluorescence dynamics in neuronal nitric oxide synthase to cofactor-induced conformational changes and dimerization. Brunner K; Tortschanoff A; Hemmens B; Andrew PJ; Mayer B; Kungl AJ Biochemistry; 1998 Dec; 37(50):17545-53. PubMed ID: 9860870 [TBL] [Abstract][Full Text] [Related]
18. Endothelial nitric oxide synthase: modulations of the distal heme site produced by progressive N-terminal deletions. Rodríguez-Crespo I; Moënne-Loccoz P; Loehr TM; Ortiz de Montellano PR Biochemistry; 1997 Jul; 36(28):8530-8. PubMed ID: 9214298 [TBL] [Abstract][Full Text] [Related]
19. Reactivity of the heme-dioxygen complex of the inducible nitric oxide synthase in the presence of alternative substrates. Lefèvre-Groboillot D; Boucher JL; Mansuy D; Stuehr DJ FEBS J; 2006 Jan; 273(1):180-91. PubMed ID: 16367758 [TBL] [Abstract][Full Text] [Related]
20. Involvement of the reductase domain of neuronal nitric oxide synthase in superoxide anion production. Miller RT; Martásek P; Roman LJ; Nishimura JS; Masters BS Biochemistry; 1997 Dec; 36(49):15277-84. PubMed ID: 9398256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]