BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 113031)

  • 1. Phase separations in membranes of Anacystis nidulans grown at different temperatures.
    Furtado D; Williams WP; Brain AP; Quinn PJ
    Biochim Biophys Acta; 1979 Aug; 555(2):352-7. PubMed ID: 113031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle aggregation in photosynthetic membranes of the blue-green alga Anacystis nidulans.
    Verwer W; Ververgaert PH; Leunissen-Bijvelt J; Verkleij AJ
    Biochim Biophys Acta; 1978 Oct; 504(1):231-4. PubMed ID: 101241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral and vertical displacement of integral membrane proteins during lipid phase transition in Anacystis nidulans.
    Armond PA; Staehelin LA
    Proc Natl Acad Sci U S A; 1979 Apr; 76(4):1901-5. PubMed ID: 109835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and morphological properties of membranes of unsaturated fatty acid auxotrophs of Salmonella typhimurium: effects of fluorinated myristic acids.
    Cottam PF; He NB; Hui SW; Ho C
    Biochim Biophys Acta; 1986 Nov; 862(2):413-28. PubMed ID: 3535893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of growth temperature on membrane dynamics in a thermophilic cyanobacterium: a spin label study.
    Miller M; Pedersen JZ; Cox RP
    Biochim Biophys Acta; 1988 Sep; 943(3):501-10. PubMed ID: 2843232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-fracture observations of Corynebacterium glutamicum: the occurrence of an outer membrane-like structure and the influence of temperature on the cytoplasmic membrane.
    Richter W; Hänel F; Hilliger M
    J Basic Microbiol; 1985; 25(8):527-36. PubMed ID: 4087157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between growth temperature of Anacystis nidulans and phase transition temperature of its thylakoid membranes.
    Tsukamoto Y; Ueki T; Mitsui T; Ono TA; Murata N
    Biochim Biophys Acta; 1980 Nov; 602(3):673-5. PubMed ID: 6776987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lipid-phase separation on the filipin action on membranes of ergosterol-replaced Tetrahymena cells, as studied by freeze-fracture electron microscopy.
    Sekiya T; Kitajima Y; Nozawa Y
    Biochim Biophys Acta; 1979 Jan; 550(2):269-78. PubMed ID: 103584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calorimetric and freeze fracture analysis of lipid phase transitions and lateral translational motion of intramembrane particles in mitochondrial membranes.
    Hackenbrock CR; Höchli M; Chau RM
    Biochim Biophys Acta; 1976 Dec; 455(2):466-84. PubMed ID: 999923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships.
    Reizer J; Grossowicz N; Barenholz Y
    Biochim Biophys Acta; 1985 May; 815(2):268-80. PubMed ID: 3995029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent changes in plasma-membrane lipid order and the phagocytotic activity of the amoeba Acanthamoeba castellanii are closely correlated.
    Avery SV; Lloyd D; Harwood JL
    Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):811-6. PubMed ID: 8554525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes of some physical properties of isolated and purified plasma and thylakoid membrane vesicles from the freshwater cyanobacterium Synechococcus 6301 (Anacystis nidulans) during adaptation to salinity.
    Rivière ME; Arrio B; Steffan I; Molitor V; Kuntner O; Peschek GA
    Arch Biochem Biophys; 1990 Jul; 280(1):159-66. PubMed ID: 2112897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes in the orientation of the fracture plane of cell membranes during freeze-fracturing as an index of change in membrane structure].
    Kirillov VA; Konev SV
    Tsitologiia; 1984 May; 26(5):520-4. PubMed ID: 6382728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of saturated fatty acid modulation of bilayer physical state on cellular and membrane structure and function.
    Chester DW; Tourtellotte ME; Melchior DL; Romano AH
    Biochim Biophys Acta; 1986 Aug; 860(2):383-98. PubMed ID: 3741857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that Streptococcus mutans constructs its membrane with excess fluidity for survival at suboptimal temperatures.
    Tsien H; Panos C; Shockman GD; Higgins ML
    J Gen Microbiol; 1980 Nov; 121(1):105-11. PubMed ID: 7252479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid phase separations and intramembranous particle movements in the yeast tonoplast.
    Moeller CH; Mudd JB; Thomson WW
    Biochim Biophys Acta; 1981 May; 643(2):376-86. PubMed ID: 7013807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of membrane fractions from Mycoplasma gallisepticum.
    Le Grimellec C; Zollinger M; Giocondi MC
    Biochim Biophys Acta; 1982 Jul; 689(2):309-18. PubMed ID: 7115712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chilling-Susceptibility of the Blue-Green Alga Anacystis nidulans: III. LIPID PHASE OF CYTOPLASMIC MEMBRANE.
    Ono TA; Murata N
    Plant Physiol; 1982 Jan; 69(1):125-9. PubMed ID: 16662143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrate starvation induces homeoviscous regulation of lipids in the cell envelope of the blue-green alga, Anacystis nidulans.
    Gombos Z; Kis M; Páli T; Vigh L
    Eur J Biochem; 1987 Jun; 165(2):461-5. PubMed ID: 3109903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature effects on cyanobacterial membranes.
    Murata N
    J Bioenerg Biomembr; 1989 Feb; 21(1):61-75. PubMed ID: 2496118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.