These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 11303103)
1. Regulation of differentiation to the infective stage of the protozoan parasite Leishmania major by tetrahydrobiopterin. Cunningham ML; Titus RG; Turco SJ; Beverley SM Science; 2001 Apr; 292(5515):285-7. PubMed ID: 11303103 [TBL] [Abstract][Full Text] [Related]
2. Adaptation of Leishmania cells to in vitro culture results in a more efficient reduction and transport of biopterin. Roy G; Kündig C; Olivier M; Papadopoulou B; Ouellette M Exp Parasitol; 2001 Mar; 97(3):161-8. PubMed ID: 11312578 [TBL] [Abstract][Full Text] [Related]
3. Pteridine salvage throughout the Leishmania infectious cycle: implications for antifolate chemotherapy. Cunningham ML; Beverley SM Mol Biochem Parasitol; 2001 Apr; 113(2):199-213. PubMed ID: 11295174 [TBL] [Abstract][Full Text] [Related]
4. Leishmania major CorA-like magnesium transporters play a critical role in parasite development and virulence. Zhu Y; Davis A; Smith BJ; Curtis J; Handman E Int J Parasitol; 2009 May; 39(6):713-23. PubMed ID: 19136005 [TBL] [Abstract][Full Text] [Related]
5. Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Akopyants NS; Matlib RS; Bukanova EN; Smeds MR; Brownstein BH; Stormo GD; Beverley SM Mol Biochem Parasitol; 2004 Jul; 136(1):71-86. PubMed ID: 15138069 [TBL] [Abstract][Full Text] [Related]
6. PTR1-dependent synthesis of tetrahydrobiopterin contributes to oxidant susceptibility in the trypanosomatid protozoan parasite Leishmania major. Nare B; Garraway LA; Vickers TJ; Beverley SM Curr Genet; 2009 Jun; 55(3):287-99. PubMed ID: 19396443 [TBL] [Abstract][Full Text] [Related]
7. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Späth GF; Epstein L; Leader B; Singer SM; Avila HA; Turco SJ; Beverley SM Proc Natl Acad Sci U S A; 2000 Aug; 97(16):9258-63. PubMed ID: 10908670 [TBL] [Abstract][Full Text] [Related]
9. Identification of a compensatory mutant (lpg2-REV) of Leishmania major able to survive as amastigotes within macrophages without LPG2-dependent glycoconjugates and its significance to virulence and immunization strategies. Späth GF; Lye LF; Segawa H; Turco SJ; Beverley SM Infect Immun; 2004 Jun; 72(6):3622-7. PubMed ID: 15155672 [TBL] [Abstract][Full Text] [Related]
10. A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Späth GF; Beverley SM Exp Parasitol; 2001 Oct; 99(2):97-103. PubMed ID: 11748963 [TBL] [Abstract][Full Text] [Related]
11. The initial step of glycerolipid metabolism in Leishmania major promastigotes involves a single glycerol-3-phosphate acyltransferase enzyme important for the synthesis of triacylglycerol but not essential for virulence. Zufferey R; Mamoun CB Mol Microbiol; 2005 May; 56(3):800-10. PubMed ID: 15819633 [TBL] [Abstract][Full Text] [Related]
12. Leishmania LABCG1 and LABCG2 transporters are involved in virulence and oxidative stress: functional linkage with autophagy. Manzano JI; Perea A; León-Guerrero D; Campos-Salinas J; Piacenza L; Castanys S; Gamarro F Parasit Vectors; 2017 May; 10(1):267. PubMed ID: 28558770 [TBL] [Abstract][Full Text] [Related]
13. Comparisons of mutants lacking the Golgi UDP-galactose or GDP-mannose transporters establish that phosphoglycans are important for promastigote but not amastigote virulence in Leishmania major. Capul AA; Hickerson S; Barron T; Turco SJ; Beverley SM Infect Immun; 2007 Sep; 75(9):4629-37. PubMed ID: 17606605 [TBL] [Abstract][Full Text] [Related]
14. Leishmania major: a clone with low virulence for BALB/c mice elicits a Th1 type response and protects against infection with a highly virulent clone. Li J; Nolan TJ; Farrell JP Exp Parasitol; 1997 Sep; 87(1):47-57. PubMed ID: 9287957 [TBL] [Abstract][Full Text] [Related]
15. Leishmania HASP and SHERP Genes Are Required for In Vivo Differentiation, Parasite Transmission and Virulence Attenuation in the Host. Doehl JS; Sádlová J; Aslan H; Pružinová K; Metangmo S; Votýpka J; Kamhawi S; Volf P; Smith DF PLoS Pathog; 2017 Jan; 13(1):e1006130. PubMed ID: 28095465 [TBL] [Abstract][Full Text] [Related]
16. The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major. Nare B; Hardy LW; Beverley SM J Biol Chem; 1997 May; 272(21):13883-91. PubMed ID: 9153248 [TBL] [Abstract][Full Text] [Related]
17. Calcineurin is required for Leishmania major stress response pathways and for virulence in the mammalian host. Naderer T; Dandash O; McConville MJ Mol Microbiol; 2011 Apr; 80(2):471-80. PubMed ID: 21320183 [TBL] [Abstract][Full Text] [Related]
18. PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major. Bello AR; Nare B; Freedman D; Hardy L; Beverley SM Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11442-6. PubMed ID: 7972081 [TBL] [Abstract][Full Text] [Related]
19. Leishmania: overexpression and comparative structural analysis of the stage-regulated meta 1 gene. Uliana SR; Goyal N; Freymüller E; Smith DF Exp Parasitol; 1999 Jul; 92(3):183-91. PubMed ID: 10403759 [TBL] [Abstract][Full Text] [Related]
20. The role of reduced pterins in resistance to reactive oxygen and nitrogen intermediates in the protozoan parasite Leishmania. Moreira W; Leblanc E; Ouellette M Free Radic Biol Med; 2009 Feb; 46(3):367-75. PubMed ID: 19022374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]