BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 11303461)

  • 1. A home-based method to reduce phytate content and increase zinc bioavailability in maize-based complementary diets.
    Hotz C; Gibson RS; Temple L
    Int J Food Sci Nutr; 2001 Mar; 52(2):133-42. PubMed ID: 11303461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of home-based processing methods to reduce the phytate content and phytate/zinc molar ratio of white maize (Zea mays).
    Hotz C; Gibson RS
    J Agric Food Chem; 2001 Feb; 49(2):692-8. PubMed ID: 11262014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary feeding practices and dietary intakes from complementary foods amongst weanlings in rural Malawi.
    Hotz C; Gibson RS
    Eur J Clin Nutr; 2001 Oct; 55(10):841-9. PubMed ID: 11593345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China.
    Ma G; Jin Y; Piao J; Kok F; Guusje B; Jacobsen E
    J Agric Food Chem; 2005 Dec; 53(26):10285-90. PubMed ID: 16366728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of processing conditions on phytic acid, calcium, iron, and zinc contents of lime-cooked maize.
    Bressani R; Turcios JC; Colmenares de Ruiz AS; de Palomo PP
    J Agric Food Chem; 2004 Mar; 52(5):1157-62. PubMed ID: 14995114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low zinc, iron, and calcium intakes of Northeast Thai school children consuming glutinous rice-based diets are not exacerbated by high phytate.
    Krittaphol W; Bailey KB; Pongcharoen T; Winichagoon P; Gibson RS
    Int J Food Sci Nutr; 2006; 57(7-8):520-8. PubMed ID: 17162330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Participatory nutrition education and adoption of new feeding practices are associated with improved adequacy of complementary diets among rural Malawian children: a pilot study.
    Hotz C; Gibson RS
    Eur J Clin Nutr; 2005 Feb; 59(2):226-37. PubMed ID: 15483634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Household dietary strategies to enhance the content and bioavailability of iron, zinc and calcium of selected rice- and maize-based Philippine complementary foods.
    Perlas LA; Gibson RS
    Matern Child Nutr; 2005 Oct; 1(4):263-73. PubMed ID: 16881908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reduced phytate diet does not reduce endogenous fecal zinc in children on a habitual high-phytate diet.
    Kennedy G; Hambidge KM; Manary M
    J Pediatr Gastroenterol Nutr; 2010 Nov; 51(5):678-9. PubMed ID: 20818269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation and lactic acid addition enhance iron bioavailability of maize.
    Proulx AK; Reddy MB
    J Agric Food Chem; 2007 Apr; 55(7):2749-54. PubMed ID: 17355139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of aqueous soaking on the phytate and mineral contents and phytate:mineral ratios of wholegrain normal sorghum and maize and low phytate sorghum.
    Kruger J; Oelofse A; Taylor JR
    Int J Food Sci Nutr; 2014 Aug; 65(5):539-46. PubMed ID: 24524560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China.
    Ma G; Li Y; Jin Y; Zhai F; Kok FJ; Yang X
    Eur J Clin Nutr; 2007 Mar; 61(3):368-74. PubMed ID: 16929240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron, zinc, and protein bioavailability proxy measures of meals prepared with nutritionally enhanced beans and maize.
    Pachón H; Ortiz DA; Araujo C; Blair MW; Restrepo J
    J Food Sci; 2009 Jun; 74(5):H147-54. PubMed ID: 19646048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sweetpotato-based complementary food would be less inhibitory on mineral absorption than a maize-based infant food assessed by compositional analysis.
    Amagloh FK; Brough L; Weber JL; Mutukumira AN; Hardacre A; Coad J
    Int J Food Sci Nutr; 2012 Dec; 63(8):957-63. PubMed ID: 22594854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trace elements in foods of children from Cameroon: a focus on zinc and phytate content.
    Kana Sop MM; Gouado I; Mananga MJ; Djeukeu Asongni W; Amvam Zollo PH; Oberleas D; Tetanye E
    J Trace Elem Med Biol; 2012 Jun; 26(2-3):201-4. PubMed ID: 22673825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytate:zinc and phytate X calcium:zinc millimolar ratios in self-selected diets of Americans, Asian Indians, and Nepalese.
    Ellis R; Kelsay JL; Reynolds RD; Morris ER; Moser PB; Frazier CW
    J Am Diet Assoc; 1987 Aug; 87(8):1043-7. PubMed ID: 3611550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytate content of foods: effect on dietary zinc bioavailability.
    Oberleas D; Harland BF
    J Am Diet Assoc; 1981 Oct; 79(4):433-6. PubMed ID: 7288050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytate degradation determines the effect of industrial processing and home cooking on iron absorption from cereal-based foods.
    Hurrell RF; Hurrell RF; Reddy MB; Burri J; Cook JD
    Br J Nutr; 2002 Aug; 88(2):117-23. PubMed ID: 12144715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiversity and phytase capacity of yeasts isolated from Tanzanian togwa.
    Hellström AM; Vázques-Juárez R; Svanberg U; Andlid TA
    Int J Food Microbiol; 2010 Jan; 136(3):352-8. PubMed ID: 19906458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.
    Gibson RS; Bailey KB; Gibbs M; Ferguson EL
    Food Nutr Bull; 2010 Jun; 31(2 Suppl):S134-46. PubMed ID: 20715598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.