These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11303567)

  • 1. Quercus species differ in water and nutrient characteristics in a resource-limited fall-line sandhill habitat.
    Donovan LA; West JB; McLeod KW
    Tree Physiol; 2000 Aug; 20(14):929-36. PubMed ID: 11303567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf traits and tree rings suggest different water-use and carbon assimilation strategies by two co-occurring Quercus species in a Mediterranean mixed-forest stand in Tuscany, Italy.
    Tognetti R; Cherubini P; Marchi S; Raschi A
    Tree Physiol; 2007 Dec; 27(12):1741-51. PubMed ID: 17938105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tree species fine-root demography parallels habitat specialization across a sandhill soil resource gradient.
    Espeleta JF; West JB; Donovan LA
    Ecology; 2009 Jul; 90(7):1773-87. PubMed ID: 19694127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species-specific patterns of hydraulic lift in co-occurring adult trees and grasses in a sandhill community.
    Espeleta JF; West JB; Donovan LA
    Oecologia; 2004 Feb; 138(3):341-9. PubMed ID: 14689298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability.
    Turnbull MH; Whitehead D; Tissue DT; Schuster WS; Brown KJ; Engel VC; Griffin KL
    Oecologia; 2002 Feb; 130(4):515-524. PubMed ID: 28547252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber).
    Vaz M; Pereira JS; Gazarini LC; David TS; David JS; Rodrigues A; Maroco J; Chaves MM
    Tree Physiol; 2010 Aug; 30(8):946-56. PubMed ID: 20571151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of leaf conductance and water potential of five Himalayan tree species.
    Poudyal K; Jha PK; Zobel DB; Thapa CB
    Tree Physiol; 2004 Jun; 24(6):689-99. PubMed ID: 15059769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water stress responses of seedlings of four Mediterranean oak species.
    Fotelli MN; Radoglou KM; Constantinidou HI
    Tree Physiol; 2000 Oct; 20(16):1065-75. PubMed ID: 11269958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature.
    Arend M; Brem A; Kuster TM; Günthardt-Goerg MS
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():169-76. PubMed ID: 22776350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of water-use efficiency of seedlings from two sympatric oak species: genotype x environment interactions.
    Ponton S; Dupouey JL; Bréda N; Dreyer E
    Tree Physiol; 2002 Apr; 22(6):413-22. PubMed ID: 11960766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem.
    Otieno DO; Schmidt MW; Kurz-Besson C; Lobo Do Vale R; Pereira JS; Tenhunen JD
    Tree Physiol; 2007 Aug; 27(8):1179-87. PubMed ID: 17472943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water relations of seedlings of three Quercus species: variations across and within species grown in contrasting light and water regimes.
    Castro-Díez P; Navarro J
    Tree Physiol; 2007 Jul; 27(7):1011-8. PubMed ID: 17403654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest.
    Renninger HJ; Carlo NJ; Clark KL; Schäfer KV
    Front Plant Sci; 2015; 6():297. PubMed ID: 25999966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature.
    Xu L; Baldocchi DD
    Tree Physiol; 2003 Sep; 23(13):865-77. PubMed ID: 14532010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity.
    Mediavilla S; Escudero A
    Tree Physiol; 2003 Oct; 23(14):987-96. PubMed ID: 12952785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of stomatal conductance among blue oak (Quercus douglasii) size classes and populations: implications for seedling establishment.
    Matzner SL; Rice KJ; Richards JH
    Tree Physiol; 2003 Aug; 23(11):777-84. PubMed ID: 12839731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of gas exchange to water stress in seedlings of woody angiosperms.
    Ni BR; Pallardy SG
    Tree Physiol; 1991 Jan; 8(1):1-9. PubMed ID: 14972892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy investment in leaves of red maple and co-occurring oaks within a forested watershed.
    Nagel JM; Griffin KL; Schuster WS; Tissue DT; Turnbull MH; Brown KJ; Whitehead D
    Tree Physiol; 2002 Aug; 22(12):859-67. PubMed ID: 12184975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting ecophysiological strategies related to drought: the case of a mixed stand of Scots pine (Pinus sylvestris) and a submediterranean oak (Quercus subpyrenaica).
    Martín-Gómez P; Aguilera M; Pemán J; Gil-Pelegrín E; Ferrio JP
    Tree Physiol; 2017 Nov; 37(11):1478-1492. PubMed ID: 29040771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.