These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
630 related articles for article (PubMed ID: 11303647)
21. CO Cohen I; Halpern M; Yermiyahu U; Bar-Tal A; Gendler T; Rachmilevitch S Planta; 2019 Nov; 250(5):1423-1432. PubMed ID: 31290031 [TBL] [Abstract][Full Text] [Related]
22. Growth overcompensation against O3 exposure in two Japanese oak species, Quercus mongolica var. crispula and Quercus serrata, grown under elevated CO2. Kitao M; Komatsu M; Yazaki K; Kitaoka S; Tobita H Environ Pollut; 2015 Nov; 206():133-41. PubMed ID: 26162332 [TBL] [Abstract][Full Text] [Related]
23. Nitrogen deposition does not affect the impact of shade on Quercus acutissima seedlings. Li M; Guo W; Du N; Xu Z; Guo X PLoS One; 2018; 13(3):e0194261. PubMed ID: 29534093 [TBL] [Abstract][Full Text] [Related]
24. Comparison of water-use efficiency of seedlings from two sympatric oak species: genotype x environment interactions. Ponton S; Dupouey JL; Bréda N; Dreyer E Tree Physiol; 2002 Apr; 22(6):413-22. PubMed ID: 11960766 [TBL] [Abstract][Full Text] [Related]
25. Moderate water stress does not inhibit nitrogen remobilization, allowing fast growth in high nitrogen content Quercus variabilis seedlings under dry conditions. Wang J; Villar-Salvador P; Li G; Liu Y Tree Physiol; 2019 Apr; 39(4):650-660. PubMed ID: 30551133 [TBL] [Abstract][Full Text] [Related]
26. Effects of elevated atmospheric carbon dioxide on biomass and carbon accumulation in a model regenerating longleaf pine community. Runion GB; Davis MA; Pritchard SG; Prior SA; Mitchell RJ; Torbert HA; Rogers HH; Dute RR J Environ Qual; 2006; 35(4):1478-86. PubMed ID: 16825468 [TBL] [Abstract][Full Text] [Related]
27. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Jackson RB; Cook CW; Pippen JS; Palmer SM Ecology; 2009 Dec; 90(12):3352-66. PubMed ID: 20120805 [TBL] [Abstract][Full Text] [Related]
28. Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. King JS; Pregitzer KS; Zak DR; Holmes WE; Schmidt K Oecologia; 2005 Dec; 146(2):318-28. PubMed ID: 16041614 [TBL] [Abstract][Full Text] [Related]
29. Impact of elevated CO2 concentration under three soil water levels on growth of Cinnamomum camphora. Zhao XZ; Wang GX; Shen ZX; Zhang H; Qiu MQ J Zhejiang Univ Sci B; 2006 Apr; 7(4):283-90. PubMed ID: 16532530 [TBL] [Abstract][Full Text] [Related]
30. Effects of high CO2 on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen. Takatani N; Ito T; Kiba T; Mori M; Miyamoto T; Maeda S; Omata T Plant Cell Physiol; 2014 Feb; 55(2):281-92. PubMed ID: 24319077 [TBL] [Abstract][Full Text] [Related]
31. Sudden increase in atmospheric CO2 concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees. Delaire M; Frak E; Sigogne M; Adam B; Beaujard F; Le Roux X Tree Physiol; 2005 Feb; 25(2):229-35. PubMed ID: 15574404 [TBL] [Abstract][Full Text] [Related]
32. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions? Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155 [TBL] [Abstract][Full Text] [Related]
33. Relationship between photosynthesis and leaf nitrogen concentration in ambient and elevated [CO2] in white birch seedlings. Cao B; Dang QL; Zhang S Tree Physiol; 2007 Jun; 27(6):891-9. PubMed ID: 17331907 [TBL] [Abstract][Full Text] [Related]
34. Proteomic Profiling for Metabolic Pathways Involved in Interactive Effects of Elevated Carbon Dioxide and Nitrogen on Leaf Growth in a Perennial Grass Species. Yu J; Fan N; Li R; Zhuang L; Xu Q; Huang B J Proteome Res; 2019 Jun; 18(6):2446-2457. PubMed ID: 31081640 [TBL] [Abstract][Full Text] [Related]
35. Influence of tree internal N status on uptake and translocation of C and N in beech: a dual 13C and 15N labeling approach. Dyckmans J; Flessa H Tree Physiol; 2001 Apr; 21(6):395-401. PubMed ID: 11282579 [TBL] [Abstract][Full Text] [Related]
36. Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia. Feng Z; Dyckmans J; Flessa H Tree Physiol; 2004 Mar; 24(3):323-30. PubMed ID: 14704141 [TBL] [Abstract][Full Text] [Related]
37. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations. Smart DR; Ritchie K; Bloom AJ; Bugbee BB Plant Cell Environ; 1998; 21():753-63. PubMed ID: 11543217 [TBL] [Abstract][Full Text] [Related]
38. [Allocation of rice photosynthates in plant-soil system in response to elevated CO Ren YW; Xiao ML; Yuan HC; Zhu ZK; Li QY; Ge TD; Su YR; Wu JS Ying Yong Sheng Tai Xue Bao; 2018 May; 29(5):1397-1404. PubMed ID: 29797870 [TBL] [Abstract][Full Text] [Related]
39. [Responses of the natural abundance of carbon and nitrogen isotopes of Quercus mongolica leaf and soil to elevated CO Sun JF; Dai WW; He TX; Peng B; Jiang P; Han SJ; Bai E Ying Yong Sheng Tai Xue Bao; 2017 Jul; 28(7):2179-2185. PubMed ID: 29741048 [TBL] [Abstract][Full Text] [Related]
40. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature. Zhao H; Li Y; Zhang X; Korpelainen H; Li C Tree Physiol; 2012 Nov; 32(11):1325-38. PubMed ID: 22918961 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]