These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
630 related articles for article (PubMed ID: 11303647)
41. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Norby RJ; Iversen CM Ecology; 2006 Jan; 87(1):5-14. PubMed ID: 16634292 [TBL] [Abstract][Full Text] [Related]
42. The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans. Reef R; Slot M; Motro U; Motro M; Motro Y; Adame MF; Garcia M; Aranda J; Lovelock CE; Winter K Photosynth Res; 2016 Aug; 129(2):159-70. PubMed ID: 27259536 [TBL] [Abstract][Full Text] [Related]
43. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest. Taylor BN; Strand AE; Cooper ER; Beidler KV; Schönholz M; Pritchard SG Tree Physiol; 2014 Sep; 34(9):955-65. PubMed ID: 25056092 [TBL] [Abstract][Full Text] [Related]
44. Carbon dioxide concentration and nitrogen input affect the C and N storage pools in Amanita muscaria-Picea abies mycorrhizae. Turnau K; Berger A; Loewe A; Einig W; Hampp R; Chalot M; Dizengremel P; Kottke I Tree Physiol; 2001 Feb; 21(2-3):93-9. PubMed ID: 11303653 [TBL] [Abstract][Full Text] [Related]
45. Atmospheric carbon dioxide concentration, nitrogen availability, temperature and the photosynthetic capacity of current-year Norway spruce shoots. Roberntz P Tree Physiol; 2001 Aug; 21(12-13):931-40. PubMed ID: 11498340 [TBL] [Abstract][Full Text] [Related]
46. [Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity]. Lyu N; Yin FH; Chen Y; Gao ZJ; Liu Y; Shi L Ying Yong Sheng Tai Xue Bao; 2015 Nov; 26(11):3337-44. PubMed ID: 26915188 [TBL] [Abstract][Full Text] [Related]
47. Root damage by insects reverses the effects of elevated atmospheric CO2 on Eucalypt seedlings. Johnson SN; Riegler M PLoS One; 2013; 8(11):e79479. PubMed ID: 24260232 [TBL] [Abstract][Full Text] [Related]
48. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua. Constable JV; Bassirirad H; Lussenhop J; Zerihun A Tree Physiol; 2001 Feb; 21(2-3):83-91. PubMed ID: 11303652 [TBL] [Abstract][Full Text] [Related]
49. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum. Butterly CR; Armstrong R; Chen D; Tang C Ann Bot; 2016 Jan; 117(1):177-85. PubMed ID: 26346721 [TBL] [Abstract][Full Text] [Related]
50. Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems. Zak DR; Holmes WE; Pregitzer KS Ecology; 2007 Oct; 88(10):2630-9. PubMed ID: 18027765 [TBL] [Abstract][Full Text] [Related]
51. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field. Tissue DT; Lewis JD; Wullschleger SD; Amthor JS; Griffin KL; Anderson OR Tree Physiol; 2002 Nov; 22(15-16):1157-66. PubMed ID: 12414375 [TBL] [Abstract][Full Text] [Related]
52. Lignification in beech (Fagus sylvatica) grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation. Blaschke L; Forstreuter M; Sheppard LJ; Leith IK; Murray MB; Polle A Tree Physiol; 2002 May; 22(7):469-77. PubMed ID: 11986050 [TBL] [Abstract][Full Text] [Related]
53. Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span. Juárez-López FJ; Escudero A; Mediavilla S Tree Physiol; 2008 Mar; 28(3):367-74. PubMed ID: 18171660 [TBL] [Abstract][Full Text] [Related]
54. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems. F U S; Ferris H Sci China C Life Sci; 2006 Dec; 49(6):603-12. PubMed ID: 17313000 [TBL] [Abstract][Full Text] [Related]
55. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Luo Y; Hui D; Zhang D Ecology; 2006 Jan; 87(1):53-63. PubMed ID: 16634296 [TBL] [Abstract][Full Text] [Related]
57. Controls of biomass partitioning between roots and shoots: Atmospheric CO Chu CC; Coleman JS; Mooney HA Oecologia; 1992 Apr; 89(4):580-587. PubMed ID: 28311891 [TBL] [Abstract][Full Text] [Related]
58. Carbon translocation patterns associated with new root proliferation during episodic growth of transplanted Quercus rubra seedlings. Sloan JL; Jacobs DF Tree Physiol; 2008 Jul; 28(7):1121-6. PubMed ID: 18450576 [TBL] [Abstract][Full Text] [Related]
59. Root-shoot interactions explain the reduction of leaf mineral content in Arabidopsis plants grown under elevated [CO2 ] conditions. Jauregui I; Aparicio-Tejo PM; Avila C; Cañas R; Sakalauskiene S; Aranjuelo I Physiol Plant; 2016 Sep; 158(1):65-79. PubMed ID: 26801348 [TBL] [Abstract][Full Text] [Related]
60. Different belowground responses to elevated ozone and soil water deficit in three European oak species (Quercus ilex, Q. pubescens and Q. robur). Mrak T; Štraus I; Grebenc T; Gričar J; Hoshika Y; Carriero G; Paoletti E; Kraigher H Sci Total Environ; 2019 Feb; 651(Pt 1):1310-1320. PubMed ID: 30360263 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]