These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11303920)

  • 21. Graph-based feature extraction: A new proposal to study the classification of music signals outside the time-frequency domain.
    Melo DFP; Fadigas IS; Pereira HBB
    PLoS One; 2020; 15(11):e0240915. PubMed ID: 33180814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Processing emotions in sounds: cross-domain aftereffects of vocal utterances and musical sounds.
    Bowman C; Yamauchi T
    Cogn Emot; 2017 Dec; 31(8):1610-1626. PubMed ID: 27848281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recognition of music and melody in patients with cochlear implants, using a new programming approach for frequency assignment.
    Falcón-González JC; Borkoski-Barreiro S; Limiñana-Cañal JM; Ramos-Macías A
    Acta Otorrinolaringol Esp; 2014; 65(5):289-96. PubMed ID: 24890686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparisons of quality ratings for music by cochlear implant and hearing aid users.
    Looi V; McDermott H; McKay C; Hickson L
    Ear Hear; 2007 Apr; 28(2 Suppl):59S-61S. PubMed ID: 17496649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decoding auditory attention to instruments in polyphonic music using single-trial EEG classification.
    Treder MS; Purwins H; Miklody D; Sturm I; Blankertz B
    J Neural Eng; 2014 Apr; 11(2):026009. PubMed ID: 24608228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Training of cochlear implant users to improve pitch perception in the presence of competing place cues.
    Vandali A; Sly D; Cowan R; van Hoesel R
    Ear Hear; 2015; 36(2):e1-e13. PubMed ID: 25329372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Music listening engages specific cortical regions within the temporal lobes: differences between musicians and non-musicians.
    Angulo-Perkins A; Aubé W; Peretz I; Barrios FA; Armony JL; Concha L
    Cortex; 2014 Oct; 59():126-37. PubMed ID: 25173956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerosol emissions from wind instruments: effects of performer age, sex, sound pressure level, and bell covers.
    Volckens J; Good KM; Goble D; Good N; Keller JP; Keisling A; L'Orange C; Morton E; Phillips R; Tanner K
    Sci Rep; 2022 Jul; 12(1):11303. PubMed ID: 35788635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new classification of wind instruments: Orofacial considerations.
    Clemente M; Mendes J; Moreira A; Bernardes G; Van Twillert H; Ferreira A; Amarante JM
    J Oral Biol Craniofac Res; 2019; 9(3):268-276. PubMed ID: 31249774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auditory Sketches: Very Sparse Representations of Sounds Are Still Recognizable.
    Isnard V; Taffou M; Viaud-Delmon I; Suied C
    PLoS One; 2016; 11(3):e0150313. PubMed ID: 26950589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sound analysis of a musical performance to evaluate prosthodontic treatment for a clarinet player.
    Hattori M; Sumita YI; Taniguchi H
    J Prosthodont; 2015 Jan; 24(1):71-7. PubMed ID: 24920520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Listeners' identification of environmental sounds.
    Lass NJ; Eastham SK; Parrish WC; Scherbick KA; Ralph DM
    Percept Mot Skills; 1982 Aug; 55(1):75-8. PubMed ID: 7133923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Persistent responsiveness of long-latency auditory cortical activities in response to repeated stimuli of musical timbre and vowel sounds.
    Kuriki S; Ohta K; Koyama S
    Cereb Cortex; 2007 Nov; 17(11):2725-32. PubMed ID: 17289776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Musical note onset detection based on a spectral sparsity measure.
    Mounir M; Karsmakers P; van Waterschoot T
    EURASIP J Audio Speech Music Process; 2021; 2021(1):30. PubMed ID: 34721557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Timbre discrimination in musical patterns.
    Grey JM
    J Acoust Soc Am; 1978 Aug; 64(2):467-72. PubMed ID: 712008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlation dimension of woodwind multiphonic tones.
    Keefe DH; Laden B
    J Acoust Soc Am; 1991 Oct; 90(4 Pt 1):1754-65. PubMed ID: 1960272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Spectral analysis of sounds produced by musical instruments and other sounding bodies for hearing screening of children].
    Ptok M; Sesterhenn G; Ptok A; Arold R
    Folia Phoniatr (Basel); 1993; 45(5):229-38. PubMed ID: 8253446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The impact of visual art and emotional sounds in specific musical anhedonia.
    Mas-Herrero E; Karhulahti M; Marco-Pallares J; Zatorre RJ; Rodriguez-Fornells A
    Prog Brain Res; 2018; 237():399-413. PubMed ID: 29779745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The production and perception of emotionally expressive walking sounds: similarities between musical performance and everyday motor activity.
    Giordano BL; Egermann H; Bresin R
    PLoS One; 2014; 9(12):e115587. PubMed ID: 25551392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lung sound classification using cepstral-based statistical features.
    Sengupta N; Sahidullah M; Saha G
    Comput Biol Med; 2016 Aug; 75():118-29. PubMed ID: 27286184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.