These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11304255)

  • 1. Equilibrium states and ground state of two-dimensional fluid foams.
    Graner F; Jiang Y; Janiaud E; Flament C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011402. PubMed ID: 11304255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hysteresis and avalanches in two-dimensional foam rheology simulations.
    Jiang Y; Swart PJ; Saxena A; Asipauskas M; Glazier JA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5819-32. PubMed ID: 11969562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization.
    Tong M; Cole K; Brito-Parada PR; Neethling S; Cilliers JJ
    Langmuir; 2017 Apr; 33(15):3839-3846. PubMed ID: 28345923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical mechanics of two-dimensional shuffled foams: geometry-topology correlation in small or large disorder limits.
    Durand M; Kraynik AM; van Swol F; Käfer J; Quilliet C; Cox S; Ataei Talebi S; Graner F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062309. PubMed ID: 25019778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarsening of three-dimensional grains in crystals, or bubbles in dry foams, tends towards a universal, statistically scale-invariant regime.
    Thomas GL; de Almeida RM; Graner F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021407. PubMed ID: 17025425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower bounds for the surface energy of two-dimensional foams.
    Teixeira PI; Graner F; Fortes MA
    Eur Phys J E Soft Matter; 2002 Dec; 9(5):447-52. PubMed ID: 15011092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascades of popping bubbles along air/foam interfaces.
    Vandewalle N; Lentz JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021507. PubMed ID: 11497589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D simulations of wet foam coarsening evidence a self similar growth regime.
    Thomas GL; Belmonte JM; Graner F; Glazier JA; de Almeida RM
    Colloids Surf A Physicochem Eng Asp; 2015 May; 473():109-114. PubMed ID: 27630449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of random monodisperse foam.
    Kraynik AM; Reinelt DA; van Swol F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031403. PubMed ID: 12689063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and coarsening at the surface of a dry three-dimensional aqueous foam.
    Roth AE; Chen BG; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062302. PubMed ID: 24483439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flowing crystals: nonequilibrium structure of foam.
    Garstecki P; Whitesides GM
    Phys Rev Lett; 2006 Jul; 97(2):024503. PubMed ID: 16907453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcanonical determination of the interface tension of flat and curved interfaces from Monte Carlo simulations.
    Tröster A; Binder K
    J Phys Condens Matter; 2012 Jul; 24(28):284107. PubMed ID: 22738832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical conductivity of quasi-two-dimensional foams.
    Yazhgur P; Honorez C; Drenckhan W; Langevin D; Salonen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042301. PubMed ID: 25974485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell topology during coarsening of simulated three-dimensional dry liquid foams.
    Sabik I; Lutz FH; Evans ME
    Soft Matter; 2024 Aug; 20(33):6668-6676. PubMed ID: 39119919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Close relationship between a dry-wet transition and a bubble rearrangement in two-dimensional foam.
    Furuta Y; Oikawa N; Kurita R
    Sci Rep; 2016 Nov; 6():37506. PubMed ID: 27874060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical mechanics of two-dimensional shuffled foams: prediction of the correlation between geometry and topology.
    Durand M; Käfer J; Quilliet C; Cox S; Talebi SA; Graner F
    Phys Rev Lett; 2011 Oct; 107(16):168304. PubMed ID: 22107435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An accurate von Neumann's law for three-dimensional foams.
    Hilgenfeldt S; Kraynik AM; Koehler SA; Stone HA
    Phys Rev Lett; 2001 Mar; 86(12):2685-8. PubMed ID: 11290011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics and stationary configurations of heterogeneous foams.
    Wang D; Cherkaev A; Osting B
    PLoS One; 2019; 14(4):e0215836. PubMed ID: 31034477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics from three-dimensional many-body fragmentation simulations on a cellular automaton model.
    Lejeune A; Perdang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046201. PubMed ID: 15600489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q.
    Kim SY; Creswick RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066107. PubMed ID: 11415173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.