These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 11304338)
1. Logistic map with a delayed feedback: Stability of a discrete time-delay control of chaos. Buchner T; Zebrowski JJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016210. PubMed ID: 11304338 [TBL] [Abstract][Full Text] [Related]
2. Exploring chaos and bifurcation in a discrete prey-predator based on coupled logistic map. Al-Kaff MO; El-Metwally HA; Elsadany AA; Elabbasy EM Sci Rep; 2024 Jul; 14(1):16118. PubMed ID: 38997275 [TBL] [Abstract][Full Text] [Related]
3. Effect of delayed feedback on the dynamics of a scalar map via a frequency-domain approach. Gentile FS; Bel AL; Belén D'Amico M; Moiola JL Chaos; 2011 Jun; 21(2):023117. PubMed ID: 21721759 [TBL] [Abstract][Full Text] [Related]
4. Spectral element method and the delayed feedback control of chaos. Tweten DJ; Mann BP Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046214. PubMed ID: 23214670 [TBL] [Abstract][Full Text] [Related]
5. Control of chaos in nonlinear systems with time-periodic coefficients. Sinha SC; Dávid A Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2417-32. PubMed ID: 16893795 [TBL] [Abstract][Full Text] [Related]
6. Andronov-Hopf and Neimark-Sacker bifurcations in time-delay differential equations and difference equations with applications to models for diseases and animal populations. Darlai R; Moore EJ; Koonprasert S Adv Differ Equ; 2020; 2020(1):190. PubMed ID: 32435267 [TBL] [Abstract][Full Text] [Related]
7. Bifurcations and chaos control in a discrete Rosenzweig-Macarthur prey-predator model. Khan AQ; Maqbool A; Alharbi TD Chaos; 2024 Mar; 34(3):. PubMed ID: 38447934 [TBL] [Abstract][Full Text] [Related]
8. Complex dynamics in the Oregonator model with linear delayed feedback. Sriram K; Bernard S Chaos; 2008 Jun; 18(2):023126. PubMed ID: 18601493 [TBL] [Abstract][Full Text] [Related]
9. Hybrid control of the Neimark-Sacker bifurcation in a delayed Nicholson's blowflies equation. Wang Y; Wang L Adv Differ Equ; 2015; 2015():306. PubMed ID: 26941781 [TBL] [Abstract][Full Text] [Related]
10. Chaotic operation and chaos control of travelling wave ultrasonic motor. Shi J; Zhao F; Shen X; Wang X Ultrasonics; 2013 Aug; 53(6):1112-23. PubMed ID: 23490014 [TBL] [Abstract][Full Text] [Related]
11. Discrete-time COVID-19 epidemic model with chaos, stability and bifurcation. Al-Basyouni KS; Khan AQ Results Phys; 2022 Dec; 43():106038. PubMed ID: 36268519 [TBL] [Abstract][Full Text] [Related]
12. Exact solutions for discrete breathers in a forced-damped chain. Gendelman OV Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062911. PubMed ID: 23848752 [TBL] [Abstract][Full Text] [Related]
13. Bifurcation analysis of a discrete-time compartmental model for hypertensive or diabetic patients exposed to COVID-19. Khan MS; Samreen M; Ozair M; Hussain T; Gómez-Aguilar JF Eur Phys J Plus; 2021; 136(8):853. PubMed ID: 34426778 [TBL] [Abstract][Full Text] [Related]
14. Bifurcation and chaos analysis for a discrete ecological developmental systems. Jiang XW; Chen C; Zhang XH; Chi M; Yan H Nonlinear Dyn; 2021; 104(4):4671-4680. PubMed ID: 33935366 [TBL] [Abstract][Full Text] [Related]
15. Effect of delay mismatch in Pyragas feedback control. Purewal AS; Postlethwaite CM; Krauskopf B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052905. PubMed ID: 25493856 [TBL] [Abstract][Full Text] [Related]
16. Delayed feedback control of chaos: bifurcation analysis. Balanov AG; Janson NB; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016222. PubMed ID: 15697713 [TBL] [Abstract][Full Text] [Related]
17. A Fractional-Order Sinusoidal Discrete Map. Liu X; Tang D; Hong L Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327831 [TBL] [Abstract][Full Text] [Related]
18. A period-doubling cascade precedes chaos for planar maps. Sander E; Yorke JA Chaos; 2013 Sep; 23(3):033113. PubMed ID: 24089949 [TBL] [Abstract][Full Text] [Related]
19. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system. Wang R; Gao JY Chaos; 2005 Sep; 15(3):33110. PubMed ID: 16252984 [TBL] [Abstract][Full Text] [Related]