These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11304390)

  • 1. Self-organization in systems of self-propelled particles.
    Levine H; Rappel WJ; Cohen I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):017101. PubMed ID: 11304390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organized vortices of circling self-propelled particles and curved active flagella.
    Yang Y; Qiu F; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012720. PubMed ID: 24580270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling alignment and movement of animals and cells.
    Lutscher F
    J Math Biol; 2002 Sep; 45(3):234-60. PubMed ID: 12373346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamics of self-propelled hard rods.
    Baskaran A; Marchetti MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011920. PubMed ID: 18351889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective dynamics of self-propelled particles with variable speed.
    Mishra S; Tunstrøm K; Couzin ID; Huepe C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011901. PubMed ID: 23005446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal and athermal three-dimensional swarms of self-propelled particles.
    Nguyen NH; Jankowski E; Glotzer SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011136. PubMed ID: 23005397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotating states of self-propelling particles in two dimensions.
    Chen HY; Leung KT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056107. PubMed ID: 16802998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active jamming: self-propelled soft particles at high density.
    Henkes S; Fily Y; Marchetti MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):040301. PubMed ID: 22181078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of the scale-invariant proportion in a flock from the metric-topological interaction.
    Niizato T; Murakami H; Gunji YP
    Biosystems; 2014 May; 119():62-8. PubMed ID: 24686118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classifying general nonlinear force laws in cell-based models via the continuum limit.
    Murray PJ; Edwards CM; Tindall MJ; Maini PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021921. PubMed ID: 22463258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nonlocal continuum model for biological aggregation.
    Topaz CM; Bertozzi AL; Lewis MA
    Bull Math Biol; 2006 Oct; 68(7):1601-23. PubMed ID: 16858662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Making noise: emergent stochasticity in collective motion.
    Bode NW; Franks DW; Wood AJ
    J Theor Biol; 2010 Dec; 267(3):292-9. PubMed ID: 20816990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sensory blind zones on milling behavior in a dynamic self-propelled particle model.
    Newman JP; Sayama H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011913. PubMed ID: 18763988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of a robust universality class in the critical behavior of self-propelled agents: metric versus topological interactions.
    Barberis L; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012139. PubMed ID: 24580204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical self-regulation in self-propelled particle flows.
    Gopinath A; Hagan MF; Marchetti MC; Baskaran A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061903. PubMed ID: 23005123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phenomenological model for the collective landing of bird flocks.
    Daruka I
    Proc Biol Sci; 2009 Mar; 276(1658):911-7. PubMed ID: 19033143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transition of vortexlike self-propelled particles induced by a hostile particle.
    Duan H; Zhang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012701. PubMed ID: 26274197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elasticity-based mechanism for the collective motion of self-propelled particles with springlike interactions: a model system for natural and artificial swarms.
    Ferrante E; Turgut AE; Dorigo M; Huepe C
    Phys Rev Lett; 2013 Dec; 111(26):268302. PubMed ID: 24483817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of metric-free interactions in flocking phenomena.
    Ginelli F; Chaté H
    Phys Rev Lett; 2010 Oct; 105(16):168103. PubMed ID: 21231019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles.
    Aditi Simha R; Ramaswamy S
    Phys Rev Lett; 2002 Jul; 89(5):058101. PubMed ID: 12144468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.