These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11304449)

  • 21. Characterization of the three-dimensional kinematic behavior of axons in central nervous system white matter.
    Singh S; Pelegri AA; Shreiber DI
    Biomech Model Mechanobiol; 2015 Nov; 14(6):1303-15. PubMed ID: 25910712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts.
    Wictorin K; Brundin P; Gustavii B; Lindvall O; Björklund A
    Nature; 1990 Oct; 347(6293):556-8. PubMed ID: 1699131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytoskeletal dynamics in response to tensile loading of mammalian axons.
    Chetta J; Kye C; Shah SB
    Cytoskeleton (Hoboken); 2010 Oct; 67(10):650-65. PubMed ID: 20845494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors influencing the regeneration of axons in the central nervous system.
    Fawcett JW
    Paraplegia; 1991 Jun; 29(5):287-93. PubMed ID: 1886727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Harvested human neurons engineered as live nervous tissue constructs: implications for transplantation. Laboratory investigation.
    Huang JH; Zager EL; Zhang J; Groff RF; Pfister BJ; Cohen AS; Grady MS; Maloney-Wilensky E; Smith DH
    J Neurosurg; 2008 Feb; 108(2):343-7. PubMed ID: 18240932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. p59fyn in rat brain is localized in developing axonal tracts and subpopulations of adult neurons and glia.
    Bare DJ; Lauder JM; Wilkie MB; Maness PF
    Oncogene; 1993 Jun; 8(6):1429-36. PubMed ID: 8502471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regeneration of adult dorsal root axons into transplants of fetal spinal cord and brain: a comparison of growth and synapse formation in appropriate and inappropriate targets.
    Itoh Y; Tessler A
    J Comp Neurol; 1990 Dec; 302(2):272-93. PubMed ID: 2289974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Colocalization of CB1 receptors with L1 and GAP-43 in forebrain white matter regions during fetal rat brain development: evidence for a role of these receptors in axonal growth and guidance.
    Gómez M; Hernández ML; Pazos MR; Tolón RM; Romero J; Fernández-Ruiz J
    Neuroscience; 2008 May; 153(3):687-99. PubMed ID: 18400407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Live imaging of regenerating lamprey spinal axons.
    Zhang G; Jin LQ; Sul JY; Haydon PG; Selzer ME
    Neurorehabil Neural Repair; 2005 Mar; 19(1):46-57. PubMed ID: 15673843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of factors regulating axon growth between the cortex and spinal cord in organotypic co-cultures: effects of age and neurotrophic factors.
    Oishi Y; Baratta J; Robertson RT; Steward O
    J Neurotrauma; 2004 Mar; 21(3):339-56. PubMed ID: 15115608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Stretch-induced axon growth: a universal, yet poorly explored process].
    Breau MA; Schneider-Maunoury S
    Biol Aujourdhui; 2017; 211(3):215-222. PubMed ID: 29412131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational modeling of axonal microtubule bundles under tension.
    Peter SJ; Mofrad MR
    Biophys J; 2012 Feb; 102(4):749-57. PubMed ID: 22385845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conduction deficits and membrane disruption of spinal cord axons as a function of magnitude and rate of strain.
    Shi R; Whitebone J
    J Neurophysiol; 2006 Jun; 95(6):3384-90. PubMed ID: 16510778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stretch-grown axons retain the ability to transmit active electrical signals.
    Pfister BJ; Bonislawski DP; Smith DH; Cohen AS
    FEBS Lett; 2006 Jun; 580(14):3525-31. PubMed ID: 16730003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Murine spinal cord explants: a model for evaluating axonal growth and myelination in vitro.
    Thomson CE; Hunter AM; Griffiths IR; Edgar JM; McCulloch MC
    J Neurosci Res; 2006 Dec; 84(8):1703-15. PubMed ID: 17075918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones.
    Goslin K; Schreyer DJ; Skene JH; Banker G
    Nature; 1988 Dec; 336(6200):672-4. PubMed ID: 3059197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regenerating and sprouting axons differ in their requirements for growth after injury.
    Bernstein-Goral H; Diener PS; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):51-72. PubMed ID: 9398450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single, high-dose intraspinal injection of chondroitinase reduces glycosaminoglycans in injured spinal cord and promotes corticospinal axonal regrowth after hemisection but not contusion.
    Iseda T; Okuda T; Kane-Goldsmith N; Mathew M; Ahmed S; Chang YW; Young W; Grumet M
    J Neurotrauma; 2008 Apr; 25(4):334-49. PubMed ID: 18373483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A transition model for finite element simulation of kinematics of central nervous system white matter.
    Pan Y; Shreiber DI; Pelegri AA
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3443-6. PubMed ID: 21803674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinal cord repair: strategies to promote axon regeneration.
    McKerracher L
    Neurobiol Dis; 2001 Feb; 8(1):11-8. PubMed ID: 11162236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.