These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 11305087)

  • 21. Effects of load-bearing exercise on skeletal structure and mechanics differ between outbred populations of mice.
    Wallace IJ; Judex S; Demes B
    Bone; 2015 Mar; 72():1-8. PubMed ID: 25460574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow.
    Muir P; Sample SJ; Barrett JG; McCarthy J; Vanderby R; Markel MD; Prokuski LJ; Kalscheur VL
    Bone; 2007 Apr; 40(4):948-56. PubMed ID: 17234467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of the in vivo adaptive response to mechanical loading.
    Saxon LK; Lanyon LE
    Methods Mol Biol; 2008; 455():307-22. PubMed ID: 18463827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis.
    Seeman E
    Osteoporos Int; 2003; 14 Suppl 3():S2-8. PubMed ID: 12730770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Bone adaptation to mechanical loading].
    Torstveit MK
    Tidsskr Nor Laegeforen; 2002 Sep; 122(21):2109-11. PubMed ID: 12555647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Denosumab, a fully human RANKL antibody, reduced bone turnover markers and increased trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys.
    Ominsky MS; Stouch B; Schroeder J; Pyrah I; Stolina M; Smith SY; Kostenuik PJ
    Bone; 2011 Aug; 49(2):162-73. PubMed ID: 21497676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Fatigue damage and repair in bone].
    Zhang C; Wu D; Guo Y; Guo T; Zhu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):180-6. PubMed ID: 12744194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. American College of Sports Medicine position stand. Osteoporosis and exercise.
    Med Sci Sports Exerc; 1995 Apr; 27(4):i-vii. PubMed ID: 7791573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone.
    Yeh OC; Keaveny TM
    J Orthop Res; 2001 Nov; 19(6):1001-7. PubMed ID: 11780997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture.
    Skerry TM
    J Musculoskelet Neuronal Interact; 2006; 6(2):122-7. PubMed ID: 16849820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians.
    Frost HM
    Angle Orthod; 1994; 64(3):175-88. PubMed ID: 8060014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bisphosphonate effects on bone turnover, microdamage, and mechanical properties: what we think we know and what we know that we don't know.
    Allen MR; Burr DB
    Bone; 2011 Jul; 49(1):56-65. PubMed ID: 20955825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone.
    Rubin CT; Lanyon LE
    J Orthop Res; 1987; 5(2):300-10. PubMed ID: 3572599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of cortical bone and its microstructure in bone strength.
    Augat P; Schorlemmer S
    Age Ageing; 2006 Sep; 35 Suppl 2():ii27-ii31. PubMed ID: 16926200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of a tension/compression skeletal system: possible strain-specific differences in the hierarchical organization of bone.
    Skedros JG; Bloebaum RD; Mason MW; Bramble DM
    Anat Rec; 1994 Aug; 239(4):396-404. PubMed ID: 7978363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Warfarin-induced impairment of cortical bone material quality and compensatory adaptation of cortical bone structure to mechanical stimuli.
    Sugiyama T; Takaki T; Sakanaka K; Sadamaru H; Mori K; Kato Y; Taguchi T; Saito T
    J Endocrinol; 2007 Jul; 194(1):213-22. PubMed ID: 17592035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parathyroid hormone and mechanical usage have a synergistic effect in rat tibial diaphyseal cortical bone.
    Ma Y; Jee WS; Yuan Z; Wei W; Chen H; Pun S; Liang H; Lin C
    J Bone Miner Res; 1999 Mar; 14(3):439-48. PubMed ID: 10027909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanobiology of cancellous bone structural adaptation.
    Jacobs CR
    J Rehabil Res Dev; 2000; 37(2):209-16. PubMed ID: 10850827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microarchitectural adaptations in aging and osteoarthrotic subchondral bone issues.
    Ding M
    Acta Orthop Suppl; 2010 Feb; 81(340):1-53. PubMed ID: 21110779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of age and loading rate on equine cortical bone failure.
    Kulin RM; Jiang F; Vecchio KS
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):57-75. PubMed ID: 21094480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.