BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11305329)

  • 1. Involvement of chromatin and histone acetylation in the regulation of HIV-LTR by thyroid hormone receptor.
    Hsia SC; Wang H; Shi YB
    Cell Res; 2001 Mar; 11(1):8-16. PubMed ID: 11305329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin disruption and histone acetylation in regulation of the human immunodeficiency virus type 1 long terminal repeat by thyroid hormone receptor.
    Hsia SC; Shi YB
    Mol Cell Biol; 2002 Jun; 22(12):4043-52. PubMed ID: 12024018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase.
    Wong J; Patterton D; Imhof A; Guschin D; Shi YB; Wolffe AP
    EMBO J; 1998 Jan; 17(2):520-34. PubMed ID: 9430643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: hormone-regulated chromatin disruption is not sufficient for transcriptional activation.
    Wong J; Shi YB; Wolffe AP
    EMBO J; 1997 Jun; 16(11):3158-71. PubMed ID: 9214633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin-associated regulation of HIV-1 transcription: implications for the development of therapeutic strategies.
    Quivy V; De Walque S; Van Lint C
    Subcell Biochem; 2007; 41():371-96. PubMed ID: 17484137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of CCAAT/enhancer-binding protein, histone acetylation, and coactivator recruitment in the regulation of malic enzyme transcription by thyroid hormone.
    Yin L; Wang Y; Dridi S; Vinson C; Hillgartner FB
    Mol Cell Endocrinol; 2005 Dec; 245(1-2):43-52. PubMed ID: 16293364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) modulates co-operation between myocyte enhancer factor 2A (MEF2A) and thyroid hormone receptor-retinoid X receptor.
    De Luca A; Severino A; De Paolis P; Cottone G; De Luca L; De Falco M; Porcellini A; Volpe M; Condorelli G
    Biochem J; 2003 Feb; 369(Pt 3):477-84. PubMed ID: 12371907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p300 stimulates transcription instigated by ligand-bound thyroid hormone receptor at a step subsequent to chromatin disruption.
    Li Q; Imhof A; Collingwood TN; Urnov FD; Wolffe AP
    EMBO J; 1999 Oct; 18(20):5634-52. PubMed ID: 10523307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the human immunodeficiency virus type 1 long terminal repeat: interactions of thyroid hormone receptor with retinoid-X receptor, nuclear factor kappa B, Sp1, and Tat.
    Desai-Yajnik V; Samuels HH
    Trans Assoc Am Physicians; 1993; 106():13-32. PubMed ID: 8036737
    [No Abstract]   [Full Text] [Related]  

  • 10. Activation of the human immunodeficiency virus type I long terminal repeat by 1 alpha,25-dihydroxyvitamin D3.
    Nevado J; Tenbaum SP; Castillo AI; Sánchez-Pacheco A; Aranda A
    J Mol Endocrinol; 2007 Jun; 38(6):587-601. PubMed ID: 17556530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation.
    Williams SA; Chen LF; Kwon H; Ruiz-Jarabo CM; Verdin E; Greene WC
    EMBO J; 2006 Jan; 25(1):139-49. PubMed ID: 16319923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter.
    Lusic M; Marcello A; Cereseto A; Giacca M
    EMBO J; 2003 Dec; 22(24):6550-61. PubMed ID: 14657027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosomes and regulation of gene expression. Structure of the HIV-1 5'LTR.
    Widłak P; Garrard WT
    Acta Biochim Pol; 1998; 45(1):209-19. PubMed ID: 9701513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel histone deacetylase inhibitor NCH-51 activates latent HIV-1 gene expression.
    Victoriano AF; Imai K; Togami H; Ueno T; Asamitsu K; Suzuki T; Miyata N; Ochiai K; Okamoto T
    FEBS Lett; 2011 Apr; 585(7):1103-11. PubMed ID: 21402072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of chromatin disruption and histone acetylation in thyroid hormone receptor action: implications in the regulation of HIV-1 LTR.
    Hsia SC; Tomita A; Obata K; Paul B; Buchholz D; Shi YB
    Histol Histopathol; 2003 Jan; 18(1):323-31. PubMed ID: 12507309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional features of a specific nucleosome containing a recognition element for the thyroid hormone receptor.
    Wong J; Li Q; Levi BZ; Shi YB; Wolffe AP
    EMBO J; 1997 Dec; 16(23):7130-45. PubMed ID: 9384590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter.
    Astrand C; Belikov S; Wrange O
    Exp Cell Res; 2009 Sep; 315(15):2604-15. PubMed ID: 19463811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The NF-kappa B and Sp1 motifs of the human immunodeficiency virus type 1 long terminal repeat function as novel thyroid hormone response elements.
    Desai-Yajnik V; Samuels HH
    Mol Cell Biol; 1993 Aug; 13(8):5057-69. PubMed ID: 8393143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corepressor requirement and thyroid hormone receptor function during Xenopus development.
    Sachs LM
    Vitam Horm; 2004; 68():209-30. PubMed ID: 15193456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor.
    Wong J; Shi YB; Wolffe AP
    Genes Dev; 1995 Nov; 9(21):2696-711. PubMed ID: 7590246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.