These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11305441)

  • 1. Absorption of ignitable liquids into polyethylene/polyvinylidine dichloride bags.
    Kocisko MJ
    J Forensic Sci; 2001 Mar; 46(2):356-62. PubMed ID: 11305441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A solid-phase microextraction method for the detection of ignitable liquids in fire debris.
    Yoshida H; Kaneko T; Suzuki S
    J Forensic Sci; 2008 May; 53(3):668-76. PubMed ID: 18471212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of ignitable liquid residues to neat ignitable liquids in the presence of matrix interferences using chemometric procedures.
    Baerncopf JM; McGuffin VL; Smith RW
    J Forensic Sci; 2011 Jan; 56(1):70-81. PubMed ID: 20854360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of oxygenated ignitable liquids by zeolites, Part II: Dual-mode heated passive headspace extraction.
    Rodgers CL; St Pierre KA; Hall AB
    Forensic Sci Int; 2014 Jul; 240():144-50. PubMed ID: 24811978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of evaporation and matrix interferences on the association of simulated ignitable liquid residues to the corresponding liquid standard.
    Prather KR; McGuffin VL; Waddell Smith R
    Forensic Sci Int; 2012 Oct; 222(1-3):242-51. PubMed ID: 22727574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sampling of ignitable liquids on suspects' hands.
    Montani I; Comment S; Delémont O
    Forensic Sci Int; 2010 Jan; 194(1-3):115-24. PubMed ID: 19954905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a solid absorbent and an accelerant detection canine for the detection of ignitable liquids burned in a structure fire.
    Nowlan M; Stuart AW; Basara GJ; Sandercock PM
    J Forensic Sci; 2007 May; 52(3):643-8. PubMed ID: 17397503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of hydrophobic pads to recover ignitable liquids from water.
    Totten V; Willis J
    Forensic Sci Int; 2020 Jul; 312():110309. PubMed ID: 32403003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GC-MS of ignitable liquids using solvent-desorbed SPME for automated analysis.
    Harris AC; Wheeler JF
    J Forensic Sci; 2003 Jan; 48(1):41-6. PubMed ID: 12570197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sampling and recovery of ignitable liquid residues (ILRs) from fire debris using capillary microextraction of volatiles (CMV) for on-site analysis.
    Valdes NB; Almirall JR
    J Forensic Sci; 2023 Mar; 68(2):629-637. PubMed ID: 36715133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris.
    Lu Y; Harrington PB
    Anal Chem; 2007 Sep; 79(17):6752-9. PubMed ID: 17683164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography.
    Frysinger GS; Gaines RB
    J Forensic Sci; 2002 May; 47(3):471-82. PubMed ID: 12051325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of gasoline on suspects' hands: Study of different sampling alternatives.
    Büchler L; Werner D; Delémont O
    Forensic Sci Int; 2021 Jan; 318():110590. PubMed ID: 33278695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of substrate interferences from high-density polyethylene on association of simulated ignitable liquid residues with the corresponding liquid.
    Prather KR; Towner SE; McGuffin VL; Smith RW
    J Forensic Sci; 2014 Jan; 59(1):52-60. PubMed ID: 24147539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption saturation and chromatographic distortion effects on passive headspace sampling with activated charcoal in fire debris analysis.
    Williams MR; Fernandes D; Bridge C; Dorrien D; Elliott S; Sigman M
    J Forensic Sci; 2005 Mar; 50(2):316-25. PubMed ID: 15813542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A UK-based ground truth data set of GCMS analysed ignitable liquid samples - a template for making chromatographic data accessible as an open source data set.
    Miller J; Puch-Solis R; Mat Desa WNS; Nic Daeid N
    Data Brief; 2022 Dec; 45():108670. PubMed ID: 36425998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of arson fire debris by low temperature dynamic headspace adsorption porous layer open tubular columns.
    Nichols JE; Harries ME; Lovestead TM; Bruno TJ
    J Chromatogr A; 2014 Mar; 1334():126-38. PubMed ID: 24569007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance testing of commercial containers for collection and storage of fire debris evidence.
    Williams MR; Sigman M
    J Forensic Sci; 2007 May; 52(3):579-85. PubMed ID: 17456085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid alteration of several ignitable liquids of potential use in arsons.
    Martín-Alberca C; Carrascosa H; San Román I; Bartolomé L; García-Ruiz C
    Sci Justice; 2018 Jan; 58(1):7-16. PubMed ID: 29332697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.