These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11305441)

  • 21. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose.
    Ferreiro-González M; Barbero GF; Palma M; Ayuso J; Álvarez JA; Barroso CG
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of drug precursors and chemicals relevant to clandestine laboratory investigation on plastic bags used for collection and storage.
    Michelot H; Fu S; Stuart B; Shimmon R; Raymond T; Crandell T; Roux C
    Forensic Sci Int; 2017 Apr; 273():106-112. PubMed ID: 28260645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate interferences in identifying flammable liquids in food, environmental and biological samples: case studies.
    Borusiewicz R
    Sci Justice; 2015 May; 55(3):176-80. PubMed ID: 25934369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Covariance mapping in the analysis of ignitable liquids by gas chromatography/mass spectrometry.
    Sigman ME; Williams MR
    Anal Chem; 2006 Mar; 78(5):1713-8. PubMed ID: 16503627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cancellous bone homograft storage with aluminium-polyethylene bags.
    Meana A; Martinez R; Cañal P; Arriaga MJ; Román FS; Llames S; Orós C; Moreno A; Fernandez C
    Cell Tissue Bank; 2006; 7(3):203-6. PubMed ID: 16933042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The identification of Isopar H in vinyl flooring.
    Wells SB
    J Forensic Sci; 2005 Jul; 50(4):865-72. PubMed ID: 16078489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance testing of the new AMPAC fire debris bag against three other commercial fire debris bags.
    Grutters MM; Dogger J; Hendrikse JN
    J Forensic Sci; 2012 Sep; 57(5):1290-8. PubMed ID: 22564080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis.
    Lopatka M; Sigman ME; Sjerps MJ; Williams MR; Vivó-Truyols G
    Forensic Sci Int; 2015 Jul; 252():177-86. PubMed ID: 26005858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic vapor microextraction of ignitable liquid from casework containers.
    Berry JL; Gregg ME; Friss AJ; Koepke AA; Suiter CL; Newman R; Harries ME; Jeerage KM
    Forensic Sci Int; 2022 Jul; 336():111315. PubMed ID: 35504094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of gasoline on arson suspects' hands.
    Muller D; Levy A; Shelef R
    Forensic Sci Int; 2011 Mar; 206(1-3):150-4. PubMed ID: 20729020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of an untargeted chemometric approach for the source inference of ignitable liquids in forensic science.
    de Figueiredo M; Cordella CBY; Jouan-Rimbaud Bouveresse D; Archer X; Bégué JM; Rutledge DN
    Forensic Sci Int; 2019 Feb; 295():8-18. PubMed ID: 30553191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial degradation of ignitable liquids on building materials.
    Hutches K
    Forensic Sci Int; 2013 Oct; 232(1-3):e38-41. PubMed ID: 24008200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of new Ampac bags and FireDebrisPAK® bags as packaging for fire debris analysis.
    Borusiewicz R
    J Forensic Sci; 2012 Jul; 57(4):1059-63. PubMed ID: 22372939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical cluster analysis of ignitable liquids based on the total ion spectrum.
    Waddell EE; Frisch-Daiello JL; Williams MR; Sigman ME
    J Forensic Sci; 2014 Sep; 59(5):1198-204. PubMed ID: 24962674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A study of the effects of a Micelle Encapsulator Fire Suppression Agent on dynamic headspace analysis of fire debris samples.
    McGee E; Lang TL
    J Forensic Sci; 2002 Mar; 47(2):267-74. PubMed ID: 11908594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of chemical modifications in acidified ignitable liquids analysed by GC-MS.
    Martín-Alberca C; García-Ruiz C; Delémont O
    Sci Justice; 2015 Dec; 55(6):446-55. PubMed ID: 26654080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid GC-MS as a Screening Tool for Forensic Fire Debris Analysis.
    Capistran BA; Sisco E
    Forensic Chem; 2022 Sep; 30():. PubMed ID: 36733494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of microbial degradation on the chromatographic profiles of tiki torch fuel, lamp oil, and turpentine.
    Turner DA; Goodpaster JV
    J Forensic Sci; 2011 Jul; 56(4):984-7. PubMed ID: 21418216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris.
    Aliaño-González MJ; Ferreiro-González M; Barbero GF; Palma M
    Talanta; 2019 Jul; 199():189-194. PubMed ID: 30952245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.