BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 11305938)

  • 1. A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes.
    Knight RD; Freeland SJ; Landweber LF
    Genome Biol; 2001; 2(4):RESEARCH0010. PubMed ID: 11305938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Across bacterial phyla, distantly-related genomes with similar genomic GC content have similar patterns of amino acid usage.
    Lightfield J; Fram NR; Ely B
    PLoS One; 2011 Mar; 6(3):e17677. PubMed ID: 21423704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The genome of Campylobacter jejuni: codon and amino acid usage.
    Fuglsang A
    APMIS; 2003 Jun; 111(6):605-18. PubMed ID: 12969016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content.
    Singer GA; Hickey DA
    Gene; 2003 Oct; 317(1-2):39-47. PubMed ID: 14604790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Codon Usage Optimization in the Prokaryotic Tree of Life: How Synonymous Codons Are Differentially Selected in Sequence Domains with Different Expression Levels and Degrees of Conservation.
    López JL; Lozano MJ; Fabre ML; Lagares A
    mBio; 2020 Jul; 11(4):. PubMed ID: 32694138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection on codon usage for error minimization at the protein level.
    Archetti M
    J Mol Evol; 2004 Sep; 59(3):400-15. PubMed ID: 15553093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling between protein level selection and codon usage optimization in the evolution of bacteria and archaea.
    Ran W; Kristensen DM; Koonin EV
    mBio; 2014 Mar; 5(2):e00956-14. PubMed ID: 24667707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomic analysis for nucleotide, codon, and amino acid usage patterns of mycoplasmas.
    Ma XX; Cao X; Ma P; Chang QY; Li LJ; Zhou XK; Zhang DR; Li MS; Ma ZR
    J Basic Microbiol; 2018 May; 58(5):425-439. PubMed ID: 29537653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid usage is asymmetrically biased in AT- and GC-rich microbial genomes.
    Bohlin J; Brynildsrud O; Vesth T; Skjerve E; Ussery DW
    PLoS One; 2013; 8(7):e69878. PubMed ID: 23922837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GC-biased gene conversion and selection affect GC content in the Oryza genus (rice).
    Muyle A; Serres-Giardi L; Ressayre A; Escobar J; Glémin S
    Mol Biol Evol; 2011 Sep; 28(9):2695-706. PubMed ID: 21504892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of completed archaeal genomes and proteomes: hypothesis of strong mutational AT pressure existed in their common predecessor.
    Khrustalev VV; Barkovsky EV
    Genomics Proteomics Bioinformatics; 2010 Mar; 8(1):22-32. PubMed ID: 20451159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GC content-independent amino acid patterns in bacteria and archaea.
    Schmidt A; Rzanny M; Schmidt A; Hagen M; Schütze E; Kothe E
    J Basic Microbiol; 2012 Apr; 52(2):195-205. PubMed ID: 21780150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of biased codon and amino acid usage in nematode genomes.
    Cutter AD; Wasmuth JD; Blaxter ML
    Mol Biol Evol; 2006 Dec; 23(12):2303-15. PubMed ID: 16936139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stop codons in bacteria are not selectively equivalent.
    Povolotskaya IS; Kondrashov FA; Ledda A; Vlasov PK
    Biol Direct; 2012 Sep; 7():30. PubMed ID: 22974057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the relationship between genomic GC Content and patterns of base usage, codon usage and amino acid usage in prokaryotes: similar GC content adopts similar compositional frequencies regardless of the phylogenetic lineages.
    Zhou HQ; Ning LW; Zhang HX; Guo FB
    PLoS One; 2014; 9(9):e107319. PubMed ID: 25255224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide patterns of codon bias are shaped by natural selection in the purple sea urchin, Strongylocentrotus purpuratus.
    Kober KM; Pogson GH
    G3 (Bethesda); 2013 Jul; 3(7):1069-83. PubMed ID: 23637123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertebrate codon bias indicates a highly GC-rich ancestral genome.
    Nabiyouni M; Prakash A; Fedorov A
    Gene; 2013 Apr; 519(1):113-9. PubMed ID: 23376453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general model of codon bias due to GC mutational bias.
    Palidwor GA; Perkins TJ; Xia X
    PLoS One; 2010 Oct; 5(10):e13431. PubMed ID: 21048949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preference of A/T ending codons in mitochondrial ATP6 gene under phylum Platyhelminthes: Codon usage of ATP6 gene in Platyhelminthes.
    Mazumder GA; Uddin A; Chakraborty S
    Mol Biochem Parasitol; 2018 Oct; 225():15-26. PubMed ID: 30149040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GC-Content of Synonymous Codons Profoundly Influences Amino Acid Usage.
    Li J; Zhou J; Wu Y; Yang S; Tian D
    G3 (Bethesda); 2015 Aug; 5(10):2027-36. PubMed ID: 26248983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.