BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 11306029)

  • 1. Beyond the catalytic core of ALDH: a web of important residues begins to emerge.
    Hempel J; Lindahl R; Perozich J; Wang B; Kuo I; Nicholas H
    Chem Biol Interact; 2001 Jan; 130-132(1-3):39-46. PubMed ID: 11306029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aldehyde dehydrogenase. Maintaining critical active site geometry at motif 8 in the class 3 enzyme.
    Hempel J; Kuo I; Perozich J; Wang BC; Lindahl R; Nicholas H
    Eur J Biochem; 2001 Feb; 268(3):722-6. PubMed ID: 11168411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifting the NAD/NADP preference in class 3 aldehyde dehydrogenase.
    Perozich J; Kuo I; Wang BC; Boesch JS; Lindahl R; Hempel J
    Eur J Biochem; 2000 Oct; 267(20):6197-203. PubMed ID: 11012673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the highly conserved histidine residues in rat liver mitochondrial aldehyde dehydrogenase as studied by site-directed mutagenesis.
    Zheng CF; Weiner H
    Arch Biochem Biophys; 1993 Sep; 305(2):460-6. PubMed ID: 8373184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subunit communication in tetrameric class 2 human liver aldehyde dehydrogenase as the basis for half-of-the-site reactivity and the dominance of the oriental subunit in a heterotetramer.
    Weiner H; Wei B; Zhou J
    Chem Biol Interact; 2001 Jan; 130-132(1-3):47-56. PubMed ID: 11306030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of thermostable aldehyde dehydrogenase by directed evolution for application in Synthetic Cascade Biomanufacturing.
    Steffler F; Guterl JK; Sieber V
    Enzyme Microb Technol; 2013 Oct; 53(5):307-14. PubMed ID: 24034429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the active site cysteine residue of rat liver mitochondrial aldehyde dehydrogenase by site-directed mutagenesis.
    Farrés J; Wang TT; Cunningham SJ; Weiner H
    Biochemistry; 1995 Feb; 34(8):2592-8. PubMed ID: 7873540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coenzyme specificity in aldehyde dehydrogenase.
    Perozich J; Kuo I; Lindahl R; Hempel J
    Chem Biol Interact; 2001 Jan; 130-132(1-3):115-24. PubMed ID: 11306036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling.
    Luo M; Christgen S; Sanyal N; Arentson BW; Becker DF; Tanner JJ
    Biochemistry; 2014 Sep; 53(35):5661-73. PubMed ID: 25137435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of conserved Glu255 and Cys289 residues to catalytic activity of recombinant aldehyde dehydrogenase from Bacillus licheniformis.
    Lee YC; Lin DT; Ong PL; Chen HL; Lo HF; Lin LL
    Biochemistry (Mosc); 2011 Nov; 76(11):1233-41. PubMed ID: 22117550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in the roles of conserved glutamic acid residues in the active site of human class 3 and class 2 aldehyde dehydrogenases.
    Mann CJ; Weiner H
    Protein Sci; 1999 Oct; 8(10):1922-9. PubMed ID: 10548037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulation of class 3 aldehyde dehydrogenase.
    Wymore T; Nicholas HB; Hempel J
    Chem Biol Interact; 2001 Jan; 130-132(1-3):201-7. PubMed ID: 11306044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation of the conserved amino acids of mitochondria aldehyde dehydrogenase. Role of the conserved residues in the mechanism of reaction.
    Sheikh S; Ni L; Weiner H
    Adv Exp Med Biol; 1997; 414():195-200. PubMed ID: 9059621
    [No Abstract]   [Full Text] [Related]  

  • 14. Characterization of glycine substitution mutations within the putative NAD+-binding site of Bacillus licheniformis aldehyde dehydrogenase.
    Lee YC; Lin DT; Chen HL; Lo HF; Hu HY; Hsiao NW; Lin LL
    Protein Pept Lett; 2012 Nov; 19(11):1183-93. PubMed ID: 22587786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Cobessi D; Tête-Favier F; Marchal S; Branlant G; Aubry A
    J Mol Biol; 2000 Jun; 300(1):141-52. PubMed ID: 10864505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide library approach with a disulfide tether to refine the Tom20 recognition motif in mitochondrial presequences.
    Obita T; Muto T; Endo T; Kohda D
    J Mol Biol; 2003 Apr; 328(2):495-504. PubMed ID: 12691756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in nucleotide specificity and catalytic mechanism between Vibrio harveyi aldehyde dehydrogenase and other members of the aldehyde dehydrogenase superfamily.
    Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E
    Chem Biol Interact; 2001 Jan; 130-132(1-3):29-38. PubMed ID: 11306028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making an Oriental equivalent of the yeast cytosolic aldehyde dehydrogenase as well as making one with positive cooperativity in coenzyme binding by mutations of glutamate 492 and arginine 480.
    Wei B; Weiner H
    Chem Biol Interact; 2001 Jan; 130-132(1-3):173-9. PubMed ID: 11306041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A histidine residue in the catalytic mechanism distinguishes Vibrio harveyi aldehyde dehydrogenase from other members of the aldehyde dehydrogenase superfamily.
    Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E
    Biochemistry; 2000 Nov; 39(47):14409-18. PubMed ID: 11087393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of Vibrio harveyi aldehyde dehydrogenase.
    Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E
    Biochemistry; 1999 Aug; 38(35):11440-7. PubMed ID: 10471295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.