BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11306098)

  • 1. Role of the conserved Ser-Tyr-Lys triad of the SDR family in sepiapterin reductase.
    Fujimoto K; Hara M; Yamada H; Sakurai M; Inaba A; Tomomura A; Katoh S
    Chem Biol Interact; 2001 Jan; 130-132(1-3):825-32. PubMed ID: 11306098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionally important residues tyrosine-171 and serine-158 in sepiapterin reductase.
    Fujimoto K; Ichinose H; Nagatsu T; Nonaka T; Mitsui Y; Katoh S
    Biochim Biophys Acta; 1999 May; 1431(2):306-14. PubMed ID: 10350607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of two basic residues (Lys-17 and Arg-39) of mouse lung carbonyl reductase in NADP(H)-binding and fatty acid activation: site-directed mutagenesis and kinetic analyses.
    Nakanishi M; Kakumoto M; Matsuura K; Deyashiki Y; Tanaka N; Nonaka T; Mitsui Y; Hara A
    J Biochem; 1996 Aug; 120(2):257-63. PubMed ID: 8889808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a mouse short-chain dehydrogenase/reductase gene, retinol dehydrogenase-similar. Function of non-catalytic amino acid residues in enzyme activity.
    Song MS; Chen W; Zhang M; Napoli JL
    J Biol Chem; 2003 Oct; 278(41):40079-87. PubMed ID: 12855677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the substrate-binding site of human carbonyl reductases CBR1 and CBR3 by site-directed mutagenesis.
    El-Hawari Y; Favia AD; Pilka ES; Kisiela M; Oppermann U; Martin HJ; Maser E
    Chem Biol Interact; 2009 Mar; 178(1-3):234-41. PubMed ID: 19061875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of 3 alpha-hydroxysteroid dehydrogenase.
    Penning TM; Bennett MJ; Smith-Hoog S; Schlegel BP; Jez JM; Lewis M
    Steroids; 1997 Jan; 62(1):101-11. PubMed ID: 9029723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of structure and catalysis for ketoreductase domains in modular polyketide synthases.
    Reid R; Piagentini M; Rodriguez E; Ashley G; Viswanathan N; Carney J; Santi DV; Hutchinson CR; McDaniel R
    Biochemistry; 2003 Jan; 42(1):72-9. PubMed ID: 12515540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of 3 alpha-hydroxysteroid dehydrogenase reveals a "push-pull" mechanism for proton transfer in aldo-keto reductases.
    Schlegel BP; Jez JM; Penning TM
    Biochemistry; 1998 Mar; 37(10):3538-48. PubMed ID: 9521675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of antisense oligodeoxynucleotide for sepiapterin reductase on the viability of PC12 cells in the presence of exogenous carbonyl compounds.
    Fujimoto K; Sakurai M; Kawase M; Katoh S
    Chem Biol Interact; 2003 Feb; 143-144():583-6. PubMed ID: 12604243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of sites in sepiapterin reductase phosphorylated by Ca2+/calmodulin-dependent protein kinase II.
    Fujimoto K; Takahashi SY; Katoh S
    Biochim Biophys Acta; 2002 Jan; 1594(1):191-8. PubMed ID: 11825621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis studies of bovine liver cytosolic dihydrodiol dehydrogenase: the role of Asp-50, Tyr-55, Lys-84, His-117, Cys-145 and Cys-193 in enzymatic activity.
    Terada T; Fujita N; Sugihara Y; Sato R; Takagi T; Maeda M
    Chem Biol Interact; 2001 Jan; 130-132(1-3):833-45. PubMed ID: 11306099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic properties and crystal structure of thermostable NAD(P)H-dependent carbonyl reductase from the hyperthermophilic archaeon Aeropyrum pernix K1.
    Fukuda Y; Sakuraba H; Araki T; Ohshima T; Yoneda K
    Enzyme Microb Technol; 2016 Sep; 91():17-25. PubMed ID: 27444325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic roles of Ser-114, Tyr-155, and Lys-159 in 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni.
    Hwang CC; Chang YH; Hsu CN; Hsu HH; Li CW; Pon HI
    J Biol Chem; 2005 Feb; 280(5):3522-8. PubMed ID: 15572373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 A resolution: the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family.
    Tanaka N; Nonaka T; Nakanishi M; Deyashiki Y; Hara A; Mitsui Y
    Structure; 1996 Jan; 4(1):33-45. PubMed ID: 8805511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 6-Pyruvoyl tetrahydropterin synthase, an enzyme with a novel type of active site involving both zinc binding and an intersubunit catalytic triad motif; site-directed mutagenesis of the proposed active center, characterization of the metal binding site and modelling of substrate binding.
    Bürgisser DM; Thöny B; Redweik U; Hess D; Heizmann CW; Huber R; Nar H
    J Mol Biol; 1995 Oct; 253(2):358-69. PubMed ID: 7563095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli FabG 3-ketoacyl-ACP reductase proteins lacking the assigned catalytic triad residues are active enzymes.
    Hu Z; Ma J; Chen Y; Tong W; Zhu L; Wang H; Cronan JE
    J Biol Chem; 2021; 296():100365. PubMed ID: 33545175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porcine carbonyl reductase. structural basis for a functional monomer in short chain dehydrogenases/reductases.
    Ghosh D; Sawicki M; Pletnev V; Erman M; Ohno S; Nakajin S; Duax WL
    J Biol Chem; 2001 May; 276(21):18457-63. PubMed ID: 11279087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 1.25 A crystal structure of sepiapterin reductase reveals its binding mode to pterins and brain neurotransmitters.
    Auerbach G; Herrmann A; Gütlich M; Fischer M; Jacob U; Bacher A; Huber R
    EMBO J; 1997 Dec; 16(24):7219-30. PubMed ID: 9405351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Liu ZL; Moon J
    Gene; 2009 Oct; 446(1):1-10. PubMed ID: 19577617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.