BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 11306608)

  • 21. Mitochondria regulate inactivation of L-type Ca2+ channels in rat heart.
    Sánchez JA; García MC; Sharma VK; Young KC; Matlib MA; Sheu SS
    J Physiol; 2001 Oct; 536(Pt 2):387-96. PubMed ID: 11600674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypoxia-elicited catecholamine release is controlled by L-type as well as N/PQ types of calcium channels in rat embryo chromaffin cells.
    Fernández-Morales JC; Padín JF; Arranz-Tagarro JA; Vestring S; García AG; de Diego AM
    Am J Physiol Cell Physiol; 2014 Sep; 307(5):C455-65. PubMed ID: 24990647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. L, P-/Q- and T-type Ca2+ channels in smooth muscle cells from human umbilical artery.
    Salemme S; Rebolledo A; Speroni F; Petruccelli S; Milesi V
    Cell Physiol Biochem; 2007; 20(1-4):55-64. PubMed ID: 17595515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SNX482 selectively blocks P/Q Ca2+ channels and delays the inactivation of Na+ channels of chromaffin cells.
    Arroyo G; Aldea M; Fuentealba J; Albillos A; García AG
    Eur J Pharmacol; 2003 Aug; 475(1-3):11-8. PubMed ID: 12954354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct effects of omega-toxins and various groups of Ca(2+)-entry inhibitors on nicotinic acetylcholine receptor and Ca2+ channels of chromaffin cells.
    Villarroya M; De la Fuente MT; López MG; Gandía L; García AG
    Eur J Pharmacol; 1997 Feb; 320(2-3):249-57. PubMed ID: 9059861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ca2+ clearance mechanisms in isolated rat adrenal chromaffin cells.
    Park YB; Herrington J; Babcock DF; Hille B
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):329-46. PubMed ID: 9019533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sarco-endoplasmic ATPase blocker 2,5-Di(tert-butyl)-1, 4-benzohydroquinone inhibits N-, P-, and Q- but not T-, L-, or R-type calcium currents in central and peripheral neurons.
    Scamps F; Vigues S; Restituito S; Campo B; Roig A; Charnet P; Valmier J
    Mol Pharmacol; 2000 Jul; 58(1):18-26. PubMed ID: 10860923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Modelling of Mg2+, ATP-dependent mitochondrial Ca ions transport in smooth muscle cells using protonophore CCCP-sensitive fluorescent tetracycline].
    Vadziuk OB; Borysova LA; Titus OV; Kosterin SO
    Ukr Biokhim Zh (1999); 2003; 75(4):64-74. PubMed ID: 14681977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial calcium uptake stimulated by Cibacron blue F3GA in bovine sperm.
    Schoff PK
    Arch Biochem Biophys; 1995 Apr; 318(2):349-55. PubMed ID: 7537487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of transient receptor potential melastatin 7 (TRPM7) currents by mitochondria.
    Kim BJ; Jeon JH; Kim SJ; So I; Kim KW
    Mol Cells; 2007 Jun; 23(3):363-9. PubMed ID: 17646711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells.
    Alvarez YD; Ibañez LI; Uchitel OD; Marengo FD
    Cell Calcium; 2008 Feb; 43(2):155-64. PubMed ID: 17561253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of secretion by mitochondria depends on the size of the local [Ca2+] after chromaffin cell stimulation.
    Montero M; Alonso MT; Albillos A; Cuchillo-Ibáñez I; Olivares R; G García A; García-Sancho J; Alvarez J
    Eur J Neurosci; 2001 Jun; 13(12):2247-54. PubMed ID: 11454028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pharmacological and biophysical characterization of voltage-gated calcium currents in the endopiriform nucleus of the guinea pig.
    Brevi S; de Curtis M; Magistretti J
    J Neurophysiol; 2001 May; 85(5):2076-87. PubMed ID: 11353024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium entry through L-type calcium channels causes mitochondrial disruption and chromaffin cell death.
    Cano-Abad MF; Villarroya M; García AG; Gabilan NH; López MG
    J Biol Chem; 2001 Oct; 276(43):39695-704. PubMed ID: 11500491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of mitochondria in modulation of spontaneous Ca2+ waves in freshly dispersed interstitial cells of Cajal from the rabbit urethra.
    Sergeant GP; Bradley E; Thornbury KD; McHale NG; Hollywood MA
    J Physiol; 2008 Oct; 586(19):4631-42. PubMed ID: 18703577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time course of action of antagonists of mitochondrial Ca uptake in intact ventricular myocytes.
    Zhou Z; Bers DM
    Pflugers Arch; 2002 Oct; 445(1):132-8. PubMed ID: 12397397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selectivity of action of pregabalin on Ca(2+) channels but not on fusion pore, exocytotic machinery, or mitochondria in chromaffin cells of the adrenal gland.
    Hernández-Vivanco A; Pérez-Alvarez A; Caba-González JC; Alonso MT; Moreno-Ortega AJ; Cano-Abad M; Ruiz-Nuño A; Carmona-Hidalgo B; Albillos A
    J Pharmacol Exp Ther; 2012 Aug; 342(2):263-72. PubMed ID: 22537772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clearance of large Ca2+ loads in a single smooth muscle cell: examination of the role of mitochondrial Ca2+ uptake and intracellular pH.
    Ganitkevich VYa
    Cell Calcium; 1999 Jan; 25(1):29-42. PubMed ID: 10191958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of Ca2+ influx by a protein kinase C activator in chromaffin cells: differential role of P/Q- and L-type Ca2+ channels.
    Sena CM; Santos RM; Boarder MR; Rosário LM
    Eur J Pharmacol; 1999 Feb; 366(2-3):281-92. PubMed ID: 10082210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mode of mitochondrial Ca2+ clearance and its influence on secretory responses in stimulated chromaffin cells.
    Warashina A
    Cell Calcium; 2006 Jan; 39(1):35-46. PubMed ID: 16257445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.