BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 11307184)

  • 41. 3-dimensional facial simulation in orthognathic surgery: is it accurate?
    Schendel SA; Jacobson R; Khalessi S
    J Oral Maxillofac Surg; 2013 Aug; 71(8):1406-14. PubMed ID: 23642546
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery.
    Polley JW; Figueroa AA
    J Oral Maxillofac Surg; 2013 May; 71(5):911-20. PubMed ID: 23312847
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Virtual planning for craniomaxillofacial surgery--7 years of experience.
    Adolphs N; Haberl EJ; Liu W; Keeve E; Menneking H; Hoffmeister B
    J Craniomaxillofac Surg; 2014 Jul; 42(5):e289-95. PubMed ID: 24286863
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mathematical modeling and numerical simulation in maxillo-facial virtual surgery (VISU).
    Marchetti C; Bianchi A; Bassi M; Gori R; Lamberti C; Sarti A
    J Craniofac Surg; 2006 Jul; 17(4):661-7; discussion 668. PubMed ID: 16877910
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel method of computer aided orthognathic surgery using individual CAD/CAM templates: a combination of osteotomy and repositioning guides.
    Li B; Zhang L; Sun H; Yuan J; Shen SG; Wang X
    Br J Oral Maxillofac Surg; 2013 Dec; 51(8):e239-44. PubMed ID: 23566536
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of computer-aided 3D surgery and stereolithographic modelling for vector orientation in premaxillary and trans-sinusoidal maxillary distraction osteogenesis.
    Varol A; Basa S
    Int J Med Robot; 2009 Jun; 5(2):198-206. PubMed ID: 19253904
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Virtual model surgery and wafer fabrication using 2-dimensional cephalograms, 3-dimensional virtual dental models, and stereolithographic technology.
    Choi JY; Hwang JM; Baek SH
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2012 Feb; 113(2):193-200. PubMed ID: 22677736
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Virtual model surgery and wafer fabrication for orthognathic surgery.
    Choi JY; Song KG; Baek SH
    Int J Oral Maxillofac Surg; 2009 Dec; 38(12):1306-10. PubMed ID: 19596555
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational modelling and optimisation of soft tissue outcome in cranio-maxillofacial surgery planning.
    Gladilin E; Ivanov A
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):305-18. PubMed ID: 19023767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clinical evaluation of a highly accurate algorithm for CT bone contour segmentation.
    Pernozzoli A; Burghart C; Brief J; Hassfeld S; Raczkowsky J; Mühling J; Wörn H
    Stud Health Technol Inform; 2000; 70():246-52. PubMed ID: 10977550
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Possibilities of computer graphics simulation in orthopedic surgery].
    Kessler P; Wiltfang J; Teschner M; Girod B; Neukam FW
    Mund Kiefer Gesichtschir; 2000 Nov; 4(6):373-6. PubMed ID: 11151344
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computer simulation in the daily practice of orthognathic surgery.
    Schendel SA
    Int J Oral Maxillofac Surg; 2015 Dec; 44(12):1451-6. PubMed ID: 26573564
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensional imaging in orthognathic surgery: the clinical application of a new method.
    Hajeer MY; Ayoub AF; Millett DT; Bock M; Siebert JP
    Int J Adult Orthodon Orthognath Surg; 2002; 17(4):318-30. PubMed ID: 12593004
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three-dimensional acquisition technologies for facial soft tissues - Applications and prospects in orthognathic surgery.
    Rasteau S; Sigaux N; Louvrier A; Bouletreau P
    J Stomatol Oral Maxillofac Surg; 2020 Dec; 121(6):721-728. PubMed ID: 32442635
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of a three-dimensional treatment planning system based on computed tomographic data.
    Troulis MJ; Everett P; Seldin EB; Kikinis R; Kaban LB
    Int J Oral Maxillofac Surg; 2002 Aug; 31(4):349-57. PubMed ID: 12361065
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prototype of simulation of orthognathic surgery using a virtual reality haptic device.
    Sohmura T; Hojo H; Nakajima M; Wakabayashi K; Nagao M; Iida S; Kitagawa T; Kogo M; Kojima T; Matsumura K; Nakamura T; Takahashi J
    Int J Oral Maxillofac Surg; 2004 Dec; 33(8):740-50. PubMed ID: 15556320
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three-dimensional imaging and computer simulation for office-based surgery.
    Schendel SA; Jacobson R
    J Oral Maxillofac Surg; 2009 Oct; 67(10):2107-14. PubMed ID: 19761904
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimizing presurgical orthodontic planning by means of the transverse coordinate simulation system (TCSS).
    Hohoff A; Meier N; Stamm T; Ehmer U; Joos U
    J Craniomaxillofac Surg; 2002 Apr; 30(2):75-86. PubMed ID: 12069509
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-dimensional virtual reality simulation of periarticular tumors using Dextroscope reconstruction and simulated surgery: a preliminary 10 case study.
    Shi J; Xia J; Wei Y; Wang S; Wu J; Chen F; Huang G; Chen J
    Acta Orthop Belg; 2014 Mar; 80(1):132-8. PubMed ID: 24873098
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.
    Swennen GR; Mommaerts MY; Abeloos J; De Clercq C; Lamoral P; Neyt N; Casselman J; Schutyser F
    Int J Oral Maxillofac Surg; 2009 Jan; 38(1):48-57. PubMed ID: 19118978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.