These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11308372)

  • 61. Beneficial or harmful influence of phytosterols on human cells?
    Rubis B; Paszel A; Kaczmarek M; Rudzinska M; Jelen H; Rybczynska M
    Br J Nutr; 2008 Dec; 100(6):1183-91. PubMed ID: 18445305
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Macrophage 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in sitosterolemia: effects of increased cellular cholesterol and sitosterol concentrations.
    Nguyen LB; Salen G; Shefer S; Tint GS; Ruiz F
    Metabolism; 2001 Oct; 50(10):1224-9. PubMed ID: 11586498
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cholesterol-lowering efficacy of a sitostanol-containing phytosterol mixture with a prudent diet in hyperlipidemic men.
    Jones PJ; Ntanios FY; Raeini-Sarjaz M; Vanstone CA
    Am J Clin Nutr; 1999 Jun; 69(6):1144-50. PubMed ID: 10357732
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dietary plant sterols alter the serum plant sterol concentration but not the cholesterol precursor sterol concentrations in young children (the STRIP Study). Special Turku Coronary Risk Factor Intervention Project.
    Tammi A; Rönnemaa T; Valsta L; Seppänen R; Rask-Nissilä L; Miettinen TA; Gylling H; Viikari J; Anttolainen M; Simell O
    J Nutr; 2001 Jul; 131(7):1942-5. PubMed ID: 11435511
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dietary phytosterol inhibits the growth and metastasis of MDA-MB-231 human breast cancer cells grown in SCID mice.
    Awad AB; Downie A; Fink CS; Kim U
    Anticancer Res; 2000; 20(2A):821-4. PubMed ID: 10810360
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Consumption of tall oil-derived phytosterols in a chocolate matrix significantly decreases plasma total and low-density lipoprotein-cholesterol levels.
    De Graaf J; De Sauvage Nolting PR; Van Dam M; Belsey EM; Kastelein JJ; Haydn Pritchard P; Stalenhoef AF
    Br J Nutr; 2002 Nov; 88(5):479-88. PubMed ID: 12425728
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sterols heating: degradation and formation of their ring-structure polar oxidation products.
    Barriuso B; Otaegui-Arrazola A; Menéndez-Carreño M; Astiasarán I; Ansorena D
    Food Chem; 2012 Nov; 135(2):706-12. PubMed ID: 22868149
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.
    Singh S; Pal S; Shanker K; Chanotiya CS; Gupta MM; Dwivedi UN; Shasany AK
    Physiol Plant; 2014 Dec; 152(4):617-33. PubMed ID: 24749735
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effects of a phytosterol-enriched dairy product on lipids, sterols and 8-isoprostane in hypercholesterolemic patients: a multicenter Italian study.
    Mannarino E; Pirro M; Cortese C; Lupattelli G; Siepi D; Mezzetti A; Bertolini S; Parillo M; Fellin R; Pujia A; Averna M; Nicolle C; Notarbartolo A
    Nutr Metab Cardiovasc Dis; 2009 Feb; 19(2):84-90. PubMed ID: 18762410
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Safety evaluation of phytosterol esters. Part 8. Lack of genotoxicity and subchronic toxicity with phytosterol oxides.
    Lea LJ; Hepburn PA; Wolfreys AM; Baldrick P
    Food Chem Toxicol; 2004 May; 42(5):771-83. PubMed ID: 15046823
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dissecting cholesterol and phytosterol biosynthesis via mutants and inhibitors.
    De Vriese K; Pollier J; Goossens A; Beeckman T; Vanneste S
    J Exp Bot; 2021 Feb; 72(2):241-253. PubMed ID: 32929492
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Formation of phytosterol photooxidation products: A chemical reaction mechanism for light-induced oxidation.
    Yang BW; Lu BY; Zhao YJ; Luo JY; Hong X
    Food Chem; 2020 Dec; 333():127430. PubMed ID: 32679413
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterization of oxyphytosterols generated by β-sitosterol ozonization.
    Martins IR; Onuki J; Miyamoto S; Uemi M
    Arch Biochem Biophys; 2020 Aug; 689():108472. PubMed ID: 32590065
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ajuga Δ24-Sterol Reductase Catalyzes the Direct Reductive Conversion of 24-Methylenecholesterol to Campesterol.
    Tsukagoshi Y; Suzuki H; Seki H; Muranaka T; Ohyama K; Fujimoto Y
    J Biol Chem; 2016 Apr; 291(15):8189-98. PubMed ID: 26872973
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Sterol Oxides in Foodstuffs: A Review.
    Finocchiaro ET; Richardson T
    J Food Prot; 1983 Oct; 46(10):917-925. PubMed ID: 30921840
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The steatotic and cytotoxic effects of cholesterol oxides in cultured L cells.
    Higley NA; Taylor SL
    Food Chem Toxicol; 1984 Dec; 22(12):983-92. PubMed ID: 6542547
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analysis of sterol oxidation products in foods.
    Guardiola F; Bou R; Boatella J; Codony R
    J AOAC Int; 2004; 87(2):441-66. PubMed ID: 15164841
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cytotoxic Potential of the Marine Diatom
    Cutignano A; Conte M; Tirino V; Del Vecchio V; De Angelis R; Nebbioso A; Altucci L; Romano G
    Mar Drugs; 2022 Sep; 20(10):. PubMed ID: 36286419
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sitosterol thermo-oxidative degradation leads to the formation of dimers, trimers and oligomers: a study using combined size exclusion chromatography/mass spectrometry.
    Rudzinska M; Przybylski R; Zhao YY; Curtis JM
    Lipids; 2010 Jun; 45(6):549-58. PubMed ID: 20512423
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Accurate and reproducible methods for analysis of sterol oxidation products in foods: an overview.
    Dutta PC
    J AOAC Int; 2004; 87(2):439-40. PubMed ID: 15164840
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.