These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11308454)

  • 1. Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow.
    Ihle T; Kroll DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):020201. PubMed ID: 11308454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green-Kubo relations.
    Ihle T; Kroll DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066705. PubMed ID: 16241378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic rotation dynamics. II. Transport coefficients, numerics, and long-time tails.
    Ihle T; Kroll DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066706. PubMed ID: 16241379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium calculation of transport coefficients for a fluid-particle model.
    Ihle T; Tüzel E; Kroll DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046707. PubMed ID: 16383567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoscopic solvent simulations: multiparticle-collision dynamics of three-dimensional flows.
    Allahyarov E; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036702. PubMed ID: 12366293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weak Galilean invariance as a selection principle for coarse-grained diffusive models.
    Cairoli A; Klages R; Baule A
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5714-5719. PubMed ID: 29760057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resummed Green-Kubo relations for a fluctuating fluid-particle model.
    Ihle T; Tüzel E; Kroll DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):035701. PubMed ID: 15524580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport coefficients of multi-particle collision algorithms with velocity-dependent collision rules.
    Ihle T
    J Phys Condens Matter; 2008 Jun; 20(23):235224. PubMed ID: 21694315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic correlations in multiparticle collision dynamics fluids.
    Huang CC; Gompper G; Winkler RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056711. PubMed ID: 23214910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscale hydrodynamics via stochastic rotation dynamics: comparison with Lennard-Jones fluid.
    Petersen MK; Lechman JB; Plimpton SJ; Grest GS; in 't Veld PJ; Schunk PR
    J Chem Phys; 2010 May; 132(17):174106. PubMed ID: 20459155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotation Invariant Vortices for Flow Visualization.
    Günther T; Schulze M; Theisel H
    IEEE Trans Vis Comput Graph; 2016 Jan; 22(1):817-26. PubMed ID: 26390472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Local Galilean Invariant Thermostat.
    Groot RD
    J Chem Theory Comput; 2006 May; 2(3):568-74. PubMed ID: 26626664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Friction and diffusion of a Brownian particle in a mesoscopic solvent.
    Lee SH; Kapral R
    J Chem Phys; 2004 Dec; 121(22):11163-9. PubMed ID: 15634070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport coefficients for the shear dynamo problem at small Reynolds numbers.
    Singh NK; Sridhar S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056309. PubMed ID: 21728649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of polymers in a particle-based mesoscopic solvent.
    Mussawisade K; Ripoll M; Winkler RG; Gompper G
    J Chem Phys; 2005 Oct; 123(14):144905. PubMed ID: 16238422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of fluid vesicles in shear flow: effect of membrane viscosity and thermal fluctuations.
    Noguchi H; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011901. PubMed ID: 16089995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galilean invariance and vertex renormalization in turbulence theory.
    McComb WD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):037301. PubMed ID: 15903642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Galilean-invariant algorithm coupling immersed moving boundary conditions and Lees-Edwards boundary conditions.
    Zhou G; Wang L; Wang X; Ge W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066701. PubMed ID: 22304214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow.
    Ji S; Jiang R; Winkler RG; Gompper G
    J Chem Phys; 2011 Oct; 135(13):134116. PubMed ID: 21992291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galilean invariance in confined quantum systems: implications for spectral gaps, superfluid flow, and periodic order.
    Sütő A
    Phys Rev Lett; 2014 Mar; 112(9):095301. PubMed ID: 24655263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.