These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11308473)

  • 1. Operator Lévy motion and multiscaling anomalous diffusion.
    Meerschaert MM; Benson DA; Baeumer B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):021112. PubMed ID: 11308473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random walk approximation of fractional-order multiscaling anomalous diffusion.
    Zhang Y; Benson DA; Meerschaert MM; LaBolle EM; Scheffler HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026706. PubMed ID: 17025566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach.
    del-Castillo-Negrete D; Carreras BA; Lynch VE
    Phys Rev Lett; 2003 Jul; 91(1):018302. PubMed ID: 12906582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractional dynamics on networks: emergence of anomalous diffusion and Lévy flights.
    Riascos AP; Mateos JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032809. PubMed ID: 25314484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic equation of linear fractional stable motion and applications to modeling the scaling of intermittent bursts.
    Watkins NW; Credgington D; Sanchez R; Rosenberg SJ; Chapman SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041124. PubMed ID: 19518190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions.
    Cartea A; del-Castillo-Negrete D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041105. PubMed ID: 17994934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights.
    Chechkin AV; Gonchar VY; Gorenflo R; Korabel N; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021111. PubMed ID: 18850790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Space-fractional advection-diffusion and reflective boundary condition.
    Krepysheva N; Di Pietro L; Néel MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021104. PubMed ID: 16605326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lévy flight with absorption: A model for diffusing diffusivity with long tails.
    Jain R; Sebastian KL
    Phys Rev E; 2017 Mar; 95(3-1):032135. PubMed ID: 28415215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise.
    Nezhadhaghighi MG
    Phys Rev E; 2017 Aug; 96(2-1):022113. PubMed ID: 28950523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-particle anomalous diffusion: probability density functions and self-similar stochastic processes.
    Pagnini G; Mura A; Mainardi F
    Philos Trans A Math Phys Eng Sci; 2013 May; 371(1990):20120154. PubMed ID: 23547231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling forms of particle densities for Lévy walks and strong anomalous diffusion.
    Dentz M; Le Borgne T; Lester DR; de Barros FP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032128. PubMed ID: 26465447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First passage times of Lévy flights coexisting with subdiffusion.
    Koren T; Klafter J; Magdziarz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031129. PubMed ID: 17930221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixing-Driven Equilibrium Reactions in Multidimensional Fractional Advection Dispersion Systems.
    Bolster D; Benson DA; Meerschaert M; Baeumer B
    Physica A; 2013 May; 392(10):. PubMed ID: 24223468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights.
    Ai BQ; Shao ZG; Zhong WR
    J Chem Phys; 2012 Nov; 137(17):174101. PubMed ID: 23145711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Markovian Lévy diffusion in nonhomogeneous media.
    Srokowski T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051105. PubMed ID: 17677020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-similar Gaussian processes for modeling anomalous diffusion.
    Lim SC; Muniandy SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021114. PubMed ID: 12241157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous mixing and reaction induced by superdiffusive nonlocal transport.
    Bolster D; Benson DA; Le Borgne T; Dentz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021119. PubMed ID: 20866787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and convergence of an implicit numerical method for the space and time fractional Bloch-Torrey equation.
    Yu Q; Liu F; Turner I; Burrage K
    Philos Trans A Math Phys Eng Sci; 2013 May; 371(1990):20120150. PubMed ID: 23547227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous transport of particle tracers in multidimensional cellular flows.
    Vargas WL; Palacio LE; Dominguez DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026314. PubMed ID: 12636807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.