These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 11308490)
1. Coexistence of large amplitude stationary structures in a model of reaction-diffusion system. Kawczyński AL; Legawiec B Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):021405. PubMed ID: 11308490 [TBL] [Abstract][Full Text] [Related]
2. Periodical survival or decay of traveling impulse in a model of a one-dimensional reaction-diffusion system. Kawczyński AL; Legawiec B Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026112. PubMed ID: 16605403 [TBL] [Abstract][Full Text] [Related]
3. Stationary periodical structure emitting an infinite number of traveling impulses in a model of a one-dimensional infinite excitable reaction-diffusion system. Kawczyński AL J Phys Chem A; 2009 Apr; 113(13):3133-6. PubMed ID: 19320515 [TBL] [Abstract][Full Text] [Related]
4. On the variety of traveling fronts in one-variable multistable reaction-diffusion systems. Leda M; Kawczyñski AL J Phys Chem A; 2006 Jun; 110(25):7882-7. PubMed ID: 16789776 [TBL] [Abstract][Full Text] [Related]
5. Asymptotic solutions of stationary patterns in convection-reaction-diffusion systems. Nekhamkina O; Sheintuch M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036207. PubMed ID: 14524868 [TBL] [Abstract][Full Text] [Related]
6. Oscillons localized inside breathing periodical structures in a two-variable model of a one-dimensional infinite excitable reaction-diffusion system. Kawczyński AL J Phys Chem A; 2010 Aug; 114(32):8217-22. PubMed ID: 20701331 [TBL] [Abstract][Full Text] [Related]
7. Two-dimensional model of a reaction-diffusion system as a typewriter. Kawczyński AL; Legawiec B Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056202. PubMed ID: 11736049 [TBL] [Abstract][Full Text] [Related]
8. Spatial bistability: a source of complex dynamics. From spatiotemporal reaction-diffusion patterns to chemomechanical structures. Boissonade J; De Kepper P; Gauffre F; Szalai I Chaos; 2006 Sep; 16(3):037110. PubMed ID: 17014244 [TBL] [Abstract][Full Text] [Related]
9. Transition from traveling to standing waves in the 4:1 resonant Belousov-Zhabotinsky reaction. Marts B; Lin AL Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026211. PubMed ID: 18352107 [TBL] [Abstract][Full Text] [Related]
10. Coexistence of stationary and traveling waves in reaction-diffusion-advection systems. Satnoianu RA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):032101. PubMed ID: 14524811 [TBL] [Abstract][Full Text] [Related]
12. Stability of position control of traveling waves in reaction-diffusion systems. Löber J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062904. PubMed ID: 25019848 [TBL] [Abstract][Full Text] [Related]
13. Breaking of translational symmetry of a traveling planar impulse in a two-dimensional two-variable reaction-diffusion model. Kawczyński AL; Leda M; Legawiec B Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046128. PubMed ID: 16711899 [TBL] [Abstract][Full Text] [Related]
14. Flow-induced arrest of spatiotemporal chaos and transition to a stationary pattern in the Gray-Scott model. Das D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052914. PubMed ID: 26651769 [TBL] [Abstract][Full Text] [Related]
15. Stable stationary and breathing holes at the onset of a weakly inverted instability. Descalzi O; Brand HR Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):055202. PubMed ID: 16383677 [TBL] [Abstract][Full Text] [Related]
16. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model. Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592 [TBL] [Abstract][Full Text] [Related]
17. Stationary spots and stationary arcs induced by advection in a one-activator, two-inhibitor reactive system. Berenstein I; Bullara D; De Decker Y Chaos; 2014 Sep; 24(3):033129. PubMed ID: 25273209 [TBL] [Abstract][Full Text] [Related]
18. Principal bifurcations and symmetries in the emergence of reaction-diffusion-advection patterns on finite domains. Yochelis A; Sheintuch M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056201. PubMed ID: 20365054 [TBL] [Abstract][Full Text] [Related]
19. Propagation of Turing patterns in a plankton model. Upadhyay RK; Volpert V; Thakur NK J Biol Dyn; 2012; 6():524-38. PubMed ID: 22873604 [TBL] [Abstract][Full Text] [Related]