These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
28. Resonance phenomena controlled by external feedback signals and additive noise in neural systems. Nobukawa S; Shibata N; Nishimura H; Doho H; Wagatsuma N; Yamanishi T Sci Rep; 2019 Sep; 9(1):12630. PubMed ID: 31477740 [TBL] [Abstract][Full Text] [Related]
29. Width of the chaotic layer: maxima due to marginal resonances. Shevchenko II Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066202. PubMed ID: 23005191 [TBL] [Abstract][Full Text] [Related]
30. Deterministic stochastic resonance in a Rössler oscillator. Arai K; Mizutani S; Yoshimura K Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026203. PubMed ID: 14995544 [TBL] [Abstract][Full Text] [Related]
31. Coherence resonance induced by colored noise near Hopf bifurcation. Ma J; Xiao T; Hou Z; Xin H Chaos; 2008 Dec; 18(4):043116. PubMed ID: 19123626 [TBL] [Abstract][Full Text] [Related]
32. Chaotic saddles and interior crises in a dissipative nontwist system. Simile Baroni R; de Carvalho RE; Caldas IL; Viana RL; Morrison PJ Phys Rev E; 2023 Feb; 107(2-1):024216. PubMed ID: 36932624 [TBL] [Abstract][Full Text] [Related]
33. Numerical explorations of R. M. Goodwin's business cycle model. Jakimowicz A Nonlinear Dynamics Psychol Life Sci; 2010 Jan; 14(1):69-83. PubMed ID: 20021778 [TBL] [Abstract][Full Text] [Related]
34. Attractor selection in a modulated laser and in the Lorenz circuit. Meucci R; Salvadori F; Naimee KA; Brugioni S; Goswami BK; Boccaletti S; Arecchi FT Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):475-86. PubMed ID: 17673407 [TBL] [Abstract][Full Text] [Related]
35. Bistable gradient networks. I. Attractors and pattern retrieval at low loading in the thermodynamic limit. McGraw PN; Menzinger M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016118. PubMed ID: 12636575 [TBL] [Abstract][Full Text] [Related]
36. Quasipotential approach to critical scaling in noise-induced chaos. Tél T; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056208. PubMed ID: 20866308 [TBL] [Abstract][Full Text] [Related]
37. Characterization of noise-induced strange nonchaotic attractors. Wang X; Lai YC; Lai CH Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016203. PubMed ID: 16907173 [TBL] [Abstract][Full Text] [Related]
38. Controlled destruction of chaos in the multistable regime. Goswami BK Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016219. PubMed ID: 17677555 [TBL] [Abstract][Full Text] [Related]
39. Stochastic multiresonance in coupled excitable FHN neurons. Li H; Sun X; Xiao J Chaos; 2018 Apr; 28(4):043113. PubMed ID: 31906634 [TBL] [Abstract][Full Text] [Related]
40. Ghost resonance in the chaotic Chua's circuit. Gomes I; Vermelho MV; Lyra ML Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056201. PubMed ID: 23004837 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]