These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 11308627)

  • 1. Numerical study of persistence in models with absorbing states.
    Albano EV; Muñoz MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031104. PubMed ID: 11308627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher-order moments at the critical point of the Ziff-Gulari-Barshad model.
    Leite VS; Hoenicke GL; Figueiredo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036104. PubMed ID: 11580391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical properties of the Ziff, Gulari, and Barshad (ZGB) model with inert sites.
    Hoenicke GL; de Andrade MF; Figueiredo W
    J Chem Phys; 2014 Aug; 141(7):074709. PubMed ID: 25149808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulations of the critical properties of a Ziff-Gulari-Barshad model of catalytic CO oxidation with long-range reactivity.
    Chan CH; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012103. PubMed ID: 25679566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistence in nonequilibrium surface growth.
    Constantin M; Dasgupta C; Chatraphorn PP; Majumdar SN; Sarma SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061608. PubMed ID: 15244586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proposal and applications of a method for the study of irreversible phase transitions.
    Loscar ES; Guisoni N; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051123. PubMed ID: 20364963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous and discontinuous absorbing-state phase transitions on Voronoi-Delaunay random lattices.
    de Oliveira MM; Alves SG; Ferreira SC
    Phys Rev E; 2016 Jan; 93(1):012110. PubMed ID: 26871027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative method to characterize continuous and discontinuous phase transitions in surface reaction models.
    Fernandes HA; da Silva R; Santos ED; Gomes PF; Arashiro E
    Phys Rev E; 2016 Aug; 94(2-1):022129. PubMed ID: 27627268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase diagrams of the Ziff-Gulari-Barshad model on random networks.
    Vilela EB; Fernandes HA; Paranhos Costa FL; Gomes PF
    J Comput Chem; 2020 Aug; 41(22):1965-1972. PubMed ID: 32597515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fraction of uninfected walkers in the one-dimensional Potts model.
    O'Donoghue SJ; Bray AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051114. PubMed ID: 12059536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universality class of the conserved Manna model in one dimension.
    Lee SB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):060101. PubMed ID: 25019704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of a catalytic reaction to periodic variation of the CO pressure: increased CO2 production and dynamic phase transition.
    Machado E; Buendía GM; Rikvold PA; Ziff RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016120. PubMed ID: 15697671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistence in the one-dimensional A+B--> Ø reaction-diffusion model.
    O'Donoghue SJ; Bray AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041105. PubMed ID: 11690008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic phase transitions in a contaminated monomer-dimer reaction model.
    Bustos V; Unac RO; Zgrablich G
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8768-76. PubMed ID: 11138180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ziff-gulari-barshad model with random distribution of inert sites.
    Hoenicke GL; Figueiredo W
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6216-23. PubMed ID: 11101952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rare regions and Griffiths singularities at a clean critical point: the five-dimensional disordered contact process.
    Vojta T; Igo J; Hoyos JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012139. PubMed ID: 25122283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model.
    da Silva R; Alves N; Drugowich de Felício JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012131. PubMed ID: 23410307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of CO desorption and coadsorption with O on the phase diagram of a Ziff-Gulari-Barshad model for the catalytic oxidation of CO.
    Buendía GM; Machado E; Rikvold PA
    J Chem Phys; 2009 Nov; 131(18):184704. PubMed ID: 19916620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-order phase transition with a logarithmic singularity in a model with absorbing states.
    Hinrichsen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016109. PubMed ID: 11304316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized contact process with two symmetric absorbing states in two dimensions.
    Lee MY; Vojta T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011114. PubMed ID: 21405668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.