These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11308701)

  • 1. Symmetry breaking, anomalous scaling, and large-scale flow generation in a convection cell.
    Tomboulides AG; Yakhot V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):035304. PubMed ID: 11308701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultimate-state scaling in a shell model for homogeneous turbulent convection.
    Ching ES; Ko TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036309. PubMed ID: 18851145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency of heat transfer in turbulent Rayleigh-Bénard convection.
    Urban P; Musilová V; Skrbek L
    Phys Rev Lett; 2011 Jul; 107(1):014302. PubMed ID: 21797545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turbulent convection at very high Rayleigh numbers.
    Niemela JJ; Skrbek L; Sreenivasan KR; Donnelly RJ
    Nature; 2000 Apr; 404(6780):837-40. PubMed ID: 10786783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convective rolls and heat transfer in finite-length rayleigh-Benard convection: A two-dimensional numerical study.
    Kenjeres S; Hanjalic K
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt A):7987-98. PubMed ID: 11138083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical insight into flow structure in ultraturbulent thermal convection.
    Kenjeres S; Hanjalić K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036307. PubMed ID: 12366253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roughness as a Route to the Ultimate Regime of Thermal Convection.
    Toppaladoddi S; Succi S; Wettlaufer JS
    Phys Rev Lett; 2017 Feb; 118(7):074503. PubMed ID: 28256887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat-transport enhancement in rotating turbulent Rayleigh-Bénard convection.
    Weiss S; Wei P; Ahlers G
    Phys Rev E; 2016 Apr; 93():043102. PubMed ID: 27176385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale velocity structures in turbulent thermal convection.
    Qiu XL; Tong P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036304. PubMed ID: 11580444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition to turbulent thermal convection beyond Ra = 10(10) detected in numerical simulations.
    Vincent AP; Yuen DA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):5241-6. PubMed ID: 11031571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turbulence in rotating Rayleigh-Bénard convection in low-Prandtl-number fluids.
    Pharasi HK; Kannan R; Kumar K; Bhattacharjee JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):047301. PubMed ID: 22181319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a vertical magnetic field on turbulent rayleigh-Benard convection.
    Cioni S; Chaumat S; Sommeria J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):R4520-3. PubMed ID: 11089073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plume dynamics in quasi-2D turbulent convection.
    Bizon C; Werne J; Predtechensky AA; Julien K; McCormick WD; Swift JB; Swinney HL
    Chaos; 1997 Mar; 7(1):107-124. PubMed ID: 12779641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalings of field correlations and heat transport in turbulent convection.
    Verma MK; Mishra PK; Pandey A; Paul S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016310. PubMed ID: 22400661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsteady natural convection on an evenly heated vertical plate for Prandtl number Pr< 1.
    Lin W; Armfield SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066309. PubMed ID: 16486061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connecting flow structures and heat flux in turbulent Rayleigh-Bénard convection.
    van der Poel EP; Stevens RJ; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):045303. PubMed ID: 22181218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh-Bénard convection.
    Lam S; Shang XD; Zhou SQ; Xia KQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066306. PubMed ID: 12188827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling of heat flux and energy spectrum for very large Prandtl number convection.
    Pandey A; Verma MK; Mishra PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023006. PubMed ID: 25353570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roughness-Facilitated Local 1/2 Scaling Does Not Imply the Onset of the Ultimate Regime of Thermal Convection.
    Zhu X; Stevens RJAM; Verzicco R; Lohse D
    Phys Rev Lett; 2017 Oct; 119(15):154501. PubMed ID: 29077430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalings for unsteady natural convection boundary layers on an evenly heated plate with time-dependent heating flux.
    Lin W; Armfield SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063013. PubMed ID: 24483563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.