These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11308761)

  • 1. Fractals and dynamical chaos in a two-dimensional Lorentz gas with sinks.
    Claus I; Gaspard P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036227. PubMed ID: 11308761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaotic properties of dilute two- and three-dimensional random Lorentz gases. II. Open systems.
    van Beijeren H; Latz A; Dorfman JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016312. PubMed ID: 11304358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lyapunov spectrum of the many-dimensional dilute random Lorentz gas.
    de Wijn AS; Beijeren Hv
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036209. PubMed ID: 15524614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lyapunov instability for a periodic Lorentz gas thermostated by deterministic scattering.
    Rateitschak K; Klages R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036209. PubMed ID: 11909214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscosity in the escape-rate formalism.
    Viscardy S; Gaspard P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041205. PubMed ID: 14682934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lyapunov spectra of billiards with cylindrical scatterers: comparison with many-particle systems.
    de Wijn AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026216. PubMed ID: 16196693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaos and fractals in dynamical models of transport and reaction.
    Gaspard P; Claus I
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):303-15. PubMed ID: 16210183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Chaos and fractals and their applications in electrocardial signal research].
    Jiao Q; Guo Y; Zhang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Jun; 26(3):676-80. PubMed ID: 19634696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lyapunov spreading of semiclassical wave packets for the Lorentz gas: theory and applications.
    Goussev A; Dorfman JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026225. PubMed ID: 15783405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaos and ergodicity of two hard disks within a circular billiard.
    Sawada S; Taniguchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022907. PubMed ID: 24032901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lyapunov exponent diagrams of a 4-dimensional Chua system.
    Stegemann C; Albuquerque HA; Rubinger RM; Rech PC
    Chaos; 2011 Sep; 21(3):033105. PubMed ID: 21974640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of extensive spatiotemporal chaos in Rayleigh-Benard convection.
    Egolf DA; Melnikov IV; Pesch W; Ecke RE
    Nature; 2000 Apr; 404(6779):733-6. PubMed ID: 10783880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic formalism for the Lorentz gas with open boundaries in d dimensions.
    van Beijeren H; Mülken O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036213. PubMed ID: 15903552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized Lyapunov exponent as a unified characterization of dynamical instabilities.
    Akimoto T; Nakagawa M; Shinkai S; Aizawa Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012926. PubMed ID: 25679700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy production in diffusion-reaction systems: the reactive random Lorentz gas.
    Mátyás L; Gaspard P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036147. PubMed ID: 15903533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy production of diffusion in spatially periodic deterministic systems.
    Dorfman JR; Gaspard P; Gilbert T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026110. PubMed ID: 12241240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Verification of chaotic behavior in an experimental loudspeaker.
    Reiss JD; Djurek I; Petosic A; Djurek D
    J Acoust Soc Am; 2008 Oct; 124(4):2031-41. PubMed ID: 19062843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new route to chaos: sequences of topological torus bifurcations.
    Spears BK; Szeri AJ
    Chaos; 2005 Sep; 15(3):33108. PubMed ID: 16252982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of entropy-diffusion relation in deterministic Hamiltonian systems through microscopic analysis.
    Acharya S; Bagchi B
    J Chem Phys; 2020 Nov; 153(18):184701. PubMed ID: 33187432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion of particles in an infinite-horizon Lorentz gas.
    Zarfaty L; Peletskyi A; Fouxon I; Denisov S; Barkai E
    Phys Rev E; 2018 Jul; 98(1-1):010101. PubMed ID: 30110737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.