These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 11308799)

  • 1. Critical behavior of the long-range Ising chain from the largest-cluster probability distribution.
    Uzelac K; Glumac Z; Anicić A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):037101. PubMed ID: 11308799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Verification of Ising phase transitions in the three-dimensional Ashkin-Teller model using Monte Carlo simulations.
    Szukowski G; Kamieniarz G; Musiał G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031124. PubMed ID: 18517346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cluster Monte Carlo simulation of the transverse Ising model.
    Blöte HW; Deng Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066110. PubMed ID: 12513350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relations between short-range and long-range Ising models.
    Angelini MC; Parisi G; Ricci-Tersenghi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062120. PubMed ID: 25019738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical Binder cumulant and universality: Fortuin-Kasteleyn clusters and order-parameter fluctuations.
    Malakis A; Fytas NG; Gülpinar G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042103. PubMed ID: 24827189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase transition of a one-dimensional Ising model with distance-dependent connections.
    Chang Y; Sun L; Cai X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021101. PubMed ID: 17930000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probability-changing cluster algorithm for Potts models.
    Tomita Y; Okabe Y
    Phys Rev Lett; 2001 Jan; 86(4):572-5. PubMed ID: 11177884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal finite-size scaling analysis of Ising models with long-range interactions at the upper critical dimensionality: isotropic case.
    Grüneberg D; Hucht A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036104. PubMed ID: 15089358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic critical behavior of the worm algorithm for the Ising model.
    Deng Y; Garoni TM; Sokal AD
    Phys Rev Lett; 2007 Sep; 99(11):110601. PubMed ID: 17930423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper and lower critical decay exponents of Ising ferromagnets with long-range interaction.
    Horita T; Suwa H; Todo S
    Phys Rev E; 2017 Jan; 95(1-1):012143. PubMed ID: 28208323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel-tempering cluster algorithm for computer simulations of critical phenomena.
    Bittner E; Janke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036701. PubMed ID: 22060523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet.
    Grousson M; Tarjus G; Viot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036109. PubMed ID: 11580396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossover and self-averaging in the two-dimensional site-diluted Ising model: application of probability-changing cluster algorithm.
    Tomita Y; Okabe Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036114. PubMed ID: 11580401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transition in the Ising model on a small-world network with distance-dependent interactions.
    Jeong D; Hong H; Kim BJ; Choi MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):027101. PubMed ID: 14525147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universality of a two-dimensional Ising ferromagnetic fluid near the second-order magnetic phase transition.
    Korneta W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041109. PubMed ID: 11690012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal dependence on disorder of two-dimensional randomly diluted and random-bond +/-J Ising models.
    Hasenbusch M; Toldin FP; Pelissetto A; Vicari E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011110. PubMed ID: 18763922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ising Ferromagnets on Proximity Graphs with Varying Disorder of the Node Placement.
    Schawe H; Norrenbrock C; Hartmann AK
    Sci Rep; 2017 Aug; 7(1):8040. PubMed ID: 28808263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-size analysis of a two-dimensional Ising model within a nonextensive approach.
    Crokidakis N; Soares-Pinto DO; Reis MS; Souza AM; Sarthour RS; Oliveira IS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051101. PubMed ID: 20364941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical behavior of a colloid-polymer mixture confined between walls.
    Vink RL; Binder K; Horbach J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056118. PubMed ID: 16803009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination.
    Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.