These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 11308852)

  • 21. Nonadditivity in the effective interactions of binary charged colloidal suspensions.
    Allahyarov E; Löwen H
    J Phys Condens Matter; 2009 Oct; 21(42):424117. PubMed ID: 21715852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction between like-charged colloidal spheres in electrolyte solutions.
    Wu J; Bratko D; Prausnitz JM
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15169-72. PubMed ID: 9860940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generalizations for the potential of mean force between two isolated colloidal particles from Monte Carlo simulations.
    Wu J; Prausnitz JM
    J Colloid Interface Sci; 2002 Aug; 252(2):326-30. PubMed ID: 16290796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique.
    Borkovec M; Szilagyi I; Popa I; Finessi M; Sinha P; Maroni P; Papastavrou G
    Adv Colloid Interface Sci; 2012 Nov; 179-182():85-98. PubMed ID: 22795487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colloidal dispersion stability of CuPc aqueous dispersions and comparisons to predictions of the DLVO theory for spheres and parallel face-to-face cubes.
    Dong J; Corti DS; Franses EI; Zhao Y; Ng HT; Hanson E
    Langmuir; 2010 May; 26(10):6995-7006. PubMed ID: 20073525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction forces between colloidal particles in liquid: theory and experiment.
    Liang Y; Hilal N; Langston P; Starov V
    Adv Colloid Interface Sci; 2007 Oct; 134-135():151-66. PubMed ID: 17499205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions.
    Tufenkji N; Elimelech M
    Langmuir; 2004 Dec; 20(25):10818-28. PubMed ID: 15568829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities.
    Tufenkji N; Elimelech M
    Langmuir; 2005 Feb; 21(3):841-52. PubMed ID: 15667159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase separation in charge-stabilized colloidal suspensions: influence of nonlinear screening.
    Denton AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041407. PubMed ID: 16711800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analytical theory of effective interactions in binary colloidal systems of soft particles.
    Majka M; Góra PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032303. PubMed ID: 25314442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theory of repulsive charged colloids in slit-pores.
    Gallardo A; Grandner S; Almarza NG; Klapp SH
    J Chem Phys; 2012 Jul; 137(1):014702. PubMed ID: 22779675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adhesion between a charged particle in an electrolyte solution and a charged substrate: Electrostatic and van der Waals interactions.
    Malysheva O; Tang T; Schiavone P
    J Colloid Interface Sci; 2008 Nov; 327(1):251-60. PubMed ID: 18768186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear screening and gas-liquid separation in suspensions of charged colloids.
    Zoetekouw B; van Roij R
    Phys Rev Lett; 2006 Dec; 97(25):258302. PubMed ID: 17280401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoparticles at fluid interfaces.
    Bresme F; Oettel M
    J Phys Condens Matter; 2007 Oct; 19(41):413101. PubMed ID: 28192311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-range forces and charge inversions in model charged colloidal dispersions at finite concentration.
    González-Tovar E; Lozada-Cassou M
    Adv Colloid Interface Sci; 2019 Aug; 270():54-72. PubMed ID: 31181349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Colloidal aggregation in polymer blends.
    Benhamou M; Ridouane H; Hachem EK; Derouiche A; Rahmoune M
    J Chem Phys; 2005 Jun; 122(24):244913. PubMed ID: 16035822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of prenucleation clusters arising from liquid-liquid phase transition on nucleation in a one-component charged colloidal suspension.
    Liu J; Shen T; Zhang S
    J Colloid Interface Sci; 2021 May; 589():77-84. PubMed ID: 33450462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Colloidal model of lysozyme aqueous solutions: a computer simulation and theoretical study.
    Pellicane G
    J Phys Chem B; 2012 Feb; 116(7):2114-20. PubMed ID: 22277046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liquid-vapor phase diagram and surface properties in oppositely charged colloids represented by a mixture of attractive and repulsive Yukawa potentials.
    Chapela GA; del Río F; Alejandre J
    J Chem Phys; 2013 Feb; 138(5):054507. PubMed ID: 23406133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Colloidal gels assembled via a temporary interfacial scaffold.
    Sanz E; White KA; Clegg PS; Cates ME
    Phys Rev Lett; 2009 Dec; 103(25):255502. PubMed ID: 20366262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.