These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11308890)

  • 1. Three-dimensional rotational Langevin dynamics and the Lebwohl-Lasher model.
    Goze Bac C; Paredes V R; Vásquez R C; Medina D E; Hasmy A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 1):042701. PubMed ID: 11308890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase behavior of the confined Lebwohl-Lasher model.
    Almarza NG; Martín C; Lomba E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011140. PubMed ID: 20866598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nematic-isotropic transition of the Lebwohl-Lasher model revisited.
    Skačej G; Zannoni C
    Philos Trans A Math Phys Eng Sci; 2021 Jul; 379(2201):20200117. PubMed ID: 34024130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wang-Landau Monte Carlo simulation of isotropic-nematic transition in liquid crystals.
    Jayasri D; Sastry VS; Murthy KP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036702. PubMed ID: 16241609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power law relaxation and glassy dynamics in Lebwohl-Lasher model near the isotropic-nematic phase transition.
    Chakrabarty S; Chakrabarti D; Bagchi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061706. PubMed ID: 16906848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase behavior of the generalized chiral Lebwohl-Lasher model in bulk and confinement.
    Elsässer P; Kuhnhold A
    Phys Rev E; 2022 May; 105(5-1):054704. PubMed ID: 35706156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory and simulation of the confined Lebwohl-Lasher model.
    Marguta RG; Martínez-Ratón Y; Almarza NG; Velasco E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041701. PubMed ID: 21599180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotropic-nematic phase transition in the Lebwohl-Lasher model from density of states simulations.
    Shekhar R; Whitmer JK; Malshe R; Moreno-Razo JA; Roberts TF; de Pablo JJ
    J Chem Phys; 2012 Jun; 136(23):234503. PubMed ID: 22779602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disclination loop behavior near the nematic-isotropic transition.
    Priezjev NV; Pelcovits RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031710. PubMed ID: 11580358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Symmetry breaking in nematic liquid crystals: analogy with cosmology and magnetism.
    Repnik R; Ranjkesh A; Simonka V; Ambrozic M; Bradac Z; Kralj S
    J Phys Condens Matter; 2013 Oct; 25(40):404201. PubMed ID: 24025777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time correlation functions in the Lebwohl-Lasher model of liquid crystals.
    Varghese A; Ilg P
    Phys Rev E; 2017 Sep; 96(3-1):032705. PubMed ID: 29346887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale approach to nematic liquid crystals via statistical field theory.
    Lu BS
    Phys Rev E; 2017 Aug; 96(2-1):022709. PubMed ID: 28950485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early stage domain coarsening of the isotropic-nematic phase transition.
    Bradač Z; Kralj S; Žumer S
    J Chem Phys; 2011 Jul; 135(2):024506. PubMed ID: 21766956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation study of the phase behavior of a nematogenic lattice-gas model.
    Bates MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051702. PubMed ID: 11735940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin dynamics for the Lebwohl-Lasher model.
    Allen MP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036703. PubMed ID: 16241610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational studies of history dependence in nematic liquid crystals in random environments.
    Ranjkesh A; Ambrožič M; Kralj S; Sluckin TJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022504. PubMed ID: 25353486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Landau-de Gennes potential for nematic liquid crystals from a systematic coarse-graining procedure.
    Ilg P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061709. PubMed ID: 23005116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cluster Monte Carlo simulations of the nematic-isotropic transition.
    Priezjev NV; Pelcovits RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):062702. PubMed ID: 11415153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-induced phase transition and coarsening dynamics in dry apolar active nematics.
    Sinha A; Chaudhuri D
    Soft Matter; 2024 Oct; 20(40):8078-8088. PubMed ID: 39355944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation of the molecular distribution and optical properties of a nematic liquid crystal system with periodic surface gratings.
    C B; V B
    Opt Express; 2010 Nov; 18(23):23646-56. PubMed ID: 21164709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.