These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11308988)

  • 1. Frustrated total reflection: the double-prism revisited.
    Haibel A; Nimtz G; Stahlhofen AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047601. PubMed ID: 11308988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two-prism configuration.
    Broe J; Keller O
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1212-22. PubMed ID: 12049360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration.
    Li CF; Wang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):055601. PubMed ID: 15244873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of the displacement of a three-dimensional Gaussian beam transmitted at total internal reflection. Near-field applications.
    Baida FI; Van Labeke D; Vigoureux JM
    Appl Opt; 1978 Mar; 17(5):858-66. PubMed ID: 20197882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-assisted resonant transmission and enhanced Goos-Hänchen shift in a frustrated total internal reflection configuration.
    Chen Y; Ban Y; Zhu QB; Chen X
    Opt Lett; 2016 Oct; 41(19):4468-4471. PubMed ID: 27749857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Goos-Hänchen shifts of partially coherent light fields.
    Wang LG; Zhu SY; Zubairy MS
    Phys Rev Lett; 2013 Nov; 111(22):223901. PubMed ID: 24329448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of the displacement of a three-dimensional Gaussian beam transmitted at total internal reflection. Near-field applications.
    Baida FI; Van Labeke D ; Vigoureux JM
    J Opt Soc Am A Opt Image Sci Vis; 2000 May; 17(5):858-66. PubMed ID: 10795633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of Goos-Hänchen shift due to a Rydberg state.
    Asadpour SH; Hamedi HR; Jafari M
    Appl Opt; 2018 May; 57(15):4013-4019. PubMed ID: 29791374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Goos-Hänchen-like shift of three-level matter wave incident on Raman beams.
    Duan Z; Hu L; Xu X; Liu C
    Opt Express; 2014 Jul; 22(15):17679-90. PubMed ID: 25089388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy flux and Goos-Hänchen shift in frustrated total internal reflection.
    Chen X; Lu XJ; Zhao PL; Zhu QB
    Opt Lett; 2012 May; 37(9):1526-8. PubMed ID: 22555726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-domain measurements of reflection delay in frustrated total internal reflection.
    Gehring GM; Liapis AC; Lukishova SG; Boyd RW
    Phys Rev Lett; 2013 Jul; 111(3):030404. PubMed ID: 23909298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos-Hänchen effect.
    Shaarawi AM; Tawfik BH; Besieris IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046626. PubMed ID: 12443368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of the Goos-Hänchen shift with neutrons.
    de Haan VO; Plomp J; Rekveldt TM; Kraan WH; van Well AA; Dalgliesh RM; Langridge S
    Phys Rev Lett; 2010 Jan; 104(1):010401. PubMed ID: 20366352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct experimental observation of giant Goos-Hänchen shifts from bandgap-enhanced total internal reflection.
    Wan Y; Zheng Z; Kong W; Liu Y; Lu Z; Bian Y
    Opt Lett; 2011 Sep; 36(18):3539-41. PubMed ID: 21931383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin canting induced nonreciprocal Goos-Hänchen shifts.
    Macêdo R; Stamps RL; Dumelow T
    Opt Express; 2014 Nov; 22(23):28467-78. PubMed ID: 25402089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplified total internal reflection.
    Fan J; Dogariu A; Wang LJ
    Opt Express; 2003 Feb; 11(4):299-308. PubMed ID: 19461736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of Goos-Hänchen shifts in metallic reflection.
    Merano M; Aiello A; 't Hooft GW; van Exter MP; Eliel ER; Woerdman JP
    Opt Express; 2007 Nov; 15(24):15928-34. PubMed ID: 19550880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic control of Goos-Hänchen shifts in a yttrium-iron-garnet film.
    Yu W; Sun H; Gao L
    Sci Rep; 2017 Mar; 7():45866. PubMed ID: 28361936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous weak value amplification of angular Goos-Hänchen and Imbert-Fedorov shifts in partial reflection.
    Goswami S; Pal M; Nandi A; Panigrahi PK; Ghosh N
    Opt Lett; 2014 Nov; 39(21):6229-32. PubMed ID: 25361321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Goos-Hänchen and Imbert-Fedorov shifts of higher-order Laguerre-Gaussian beams reflected from a dielectric slab.
    Pichugin KN; Maksimov DN; Sadreev AF
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1324-1329. PubMed ID: 30110294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.