BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11309064)

  • 1. Direct polymerase chain reaction detection of ropy Pediococcus damnosus strains in wine.
    Gindreau E; Walling E; Lonvaud-Funel A
    J Appl Microbiol; 2001 Apr; 90(4):535-42. PubMed ID: 11309064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and quantification of Brettanomyces bruxellensis and 'ropy' Pediococcus damnosus strains in wine by real-time polymerase chain reaction.
    Delaherche A; Claisse O; Lonvaud-Funel A
    J Appl Microbiol; 2004; 97(5):910-5. PubMed ID: 15479405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A putative glucan synthase gene dps detected in exopolysaccharide-producing Pediococcus damnosus and Oenococcus oeni strains isolated from wine and cider.
    Walling E; Gindreau E; Lonvaud-Funel A
    Int J Food Microbiol; 2005 Jan; 98(1):53-62. PubMed ID: 15617800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of lactic acid populations associated with wine spoilage.
    Beneduce L; Spano G; Vernile A; Tarantino D; Massa S
    J Basic Microbiol; 2004; 44(1):10-6. PubMed ID: 14768022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a species-specific multiplex PCR for the identification of pediococci.
    Pfannebecker J; Fröhlich J
    Int J Food Microbiol; 2008 Dec; 128(2):288-96. PubMed ID: 18835501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pediococcus parvulus gtf gene encoding the GTF glycosyltransferase and its application for specific PCR detection of beta-D-glucan-producing bacteria in foods and beverages.
    Werning ML; Ibarburu I; Dueñas MT; Irastorza A; Navas J; López P
    J Food Prot; 2006 Jan; 69(1):161-9. PubMed ID: 16416914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of malolactic fermentation by Pediococcus damnosus on the composition and sensory profile of Albariño and Caiño white wines.
    Juega M; Costantini A; Bonello F; Cravero MC; Martinez-Rodriguez AJ; Carrascosa AV; Garcia-Moruno E
    J Appl Microbiol; 2014 Mar; 116(3):586-95. PubMed ID: 24206231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysozyme resistance of the ropy strain Pediococcus parvulus IOEB 8801 is correlated with beta-glucan accumulation around the cell.
    Coulon J; Houlès A; Dimopoulou M; Maupeu J; Dols-Lafargue M
    Int J Food Microbiol; 2012 Sep; 159(1):25-9. PubMed ID: 22938835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of horA and its flanking regions of Pediococcus damnosus ABBC478 and development of more specific and sensitive horA PCR method.
    Suzuki K; Sami M; Iijima K; Ozaki K; Yamashita H
    Lett Appl Microbiol; 2006 Apr; 42(4):392-9. PubMed ID: 16599994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Which lactic acid bacteria are responsible for histamine production in wine?
    Landete JM; Ferrer S; Pardo I
    J Appl Microbiol; 2005; 99(3):580-6. PubMed ID: 16108800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential real-time PCR assay for enumeration of lactic acid bacteria in wine.
    Neeley ET; Phister TG; Mills DA
    Appl Environ Microbiol; 2005 Dec; 71(12):8954-7. PubMed ID: 16332898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-loci sequence typing (MLST) for two lacto-acid bacteria (LAB) species: Pediococcus parvulus and P. damnosus.
    Calmin G; Lefort F; Belbahri L
    Mol Biotechnol; 2008 Oct; 40(2):170-9. PubMed ID: 18543129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random amplified polymorphic DNA-PCR based cloning of markers to identify the beer-spoilage strains of Lactobacillus brevis, Pediococcus damnosus, Lactobacillus collinoides and Lactobacillus coryniformis.
    Fujii T; Nakashima K; Hayashi N
    J Appl Microbiol; 2005; 98(5):1209-20. PubMed ID: 15836491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A real-time PCR assay for detection and quantification of 2-branched (1,3)-beta-D-glucan producing lactic acid bacteria in cider.
    Ibarburu I; Aznar R; Elizaquível P; García-Quintáns N; López P; Munduate A; Irastorza A; Dueñas MT
    Int J Food Microbiol; 2010 Sep; 143(1-2):26-31. PubMed ID: 20696488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A specific oligonucleotide primer for the rapid detection of Lactobacillus lindneri by polymerase chain reaction.
    Yasui T; Okamoto T; Taguchi H
    Can J Microbiol; 1997 Feb; 43(2):157-63. PubMed ID: 9090105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and expression of the malolactic gene of Pediococcus damnosus NCFB1832 in Saccharomyces cerevisiae.
    Bauer R; Volschenk H; Dicks LM
    J Biotechnol; 2005 Sep; 118(4):353-62. PubMed ID: 15950306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast identification of wine related lactic acid bacteria by multiplex PCR.
    Petri A; Pfannebecker J; Fröhlich J; König H
    Food Microbiol; 2013 Feb; 33(1):48-54. PubMed ID: 23122500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of gtf, a glucosyltransferase gene in the genomes of Pediococcus parvulus and Oenococcus oeni, two bacterial species commonly found in wine.
    Dols-Lafargue M; Lee HY; Le Marrec C; Heyraud A; Chambat G; Lonvaud-Funel A
    Appl Environ Microbiol; 2008 Jul; 74(13):4079-90. PubMed ID: 18469121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of wine lactic acid bacteria by Raman spectroscopy.
    Rodriguez SB; Thornton MA; Thornton RJ
    J Ind Microbiol Biotechnol; 2017 Aug; 44(8):1167-1175. PubMed ID: 28439768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enumeration and detection of acetic acid bacteria by real-time PCR and nested PCR.
    González A; Hierro N; Poblet M; Mas A; Guillamón JM
    FEMS Microbiol Lett; 2006 Jan; 254(1):123-8. PubMed ID: 16451189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.