These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 11309069)

  • 41. Biocontrol of Potato Common Scab is Associated with High Pseudomonas fluorescens LBUM223 Populations and Phenazine-1-Carboxylic Acid Biosynthetic Transcript Accumulation in the Potato Geocaulosphere.
    Arseneault T; Goyer C; Filion M
    Phytopathology; 2016 Sep; 106(9):963-70. PubMed ID: 27088392
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Field monitoring of plant-growth-promoting rhizobacteria by colony immunoblotting.
    Krishnen G; Kecskés ML; Rose MT; Geelan-Small P; Amprayn KO; Pereg L; Kennedy IR
    Can J Microbiol; 2011 Nov; 57(11):914-22. PubMed ID: 22017658
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combination of
    Ni H; Wu Y; Zong R; Ren S; Pan D; Yu L; Li J; Qu Z; Wang Q; Zhao G; Zhao J; Liu L; Li T; Zhang Y; Tu Q
    Front Microbiol; 2023; 14():1064358. PubMed ID: 36819023
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Circadian variation in Pseudomonas fluorescens (CHA0)-mediated paralysis of Caenorhabditis elegans.
    Romanowski A; Migliori ML; Valverde C; Golombek DA
    Microb Pathog; 2011 Jan; 50(1):23-30. PubMed ID: 20884343
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of organic matter in microbial transport during irrigation with sewage effluent.
    Fine P; Hass A
    J Environ Qual; 2007; 36(4):1050-60. PubMed ID: 17526884
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mobility of the organochlorine compound dicofol in soil promoted by Pseudomonas fluorescens.
    Brunninger BM; Mano DM; Scheunert I; Langenbach T
    Ecotoxicol Environ Saf; 1999 Oct; 44(2):154-9. PubMed ID: 10571461
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temperature-responsive sensing regulates biocontrol factor expression in Pseudomonas fluorescens CHA0.
    Humair B; González N; Mossialos D; Reimmann C; Haas D
    ISME J; 2009 Aug; 3(8):955-65. PubMed ID: 19421236
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities.
    Schnider U; Keel C; Blumer C; Troxler J; Défago G; Haas D
    J Bacteriol; 1995 Sep; 177(18):5387-92. PubMed ID: 7665535
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium.
    Rincón A; Valladares F; Gimeno TE; Pueyo JJ
    Tree Physiol; 2008 Nov; 28(11):1693-701. PubMed ID: 18765374
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Indigenous microflora responses to introduction of cyanogenic strains of Pseudomonas fluorescens into soil.
    Piotrowska-Seget Z; Kozdrój J
    Acta Microbiol Pol; 1999; 48(1):73-8. PubMed ID: 10467697
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lysimeter Test of Coke Plant Effluent Disposal to Land in India.
    Ghose MK; Roy S
    J Air Waste Manag Assoc; 1999 Oct; 49(10):1245-1249. PubMed ID: 28060665
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improvement of a dry formulation of Pseudomonas fluorescens EPS62e for fire blight disease biocontrol by combination of culture osmoadaptation with a freeze-drying lyoprotectant.
    Cabrefiga J; Francés J; Montesinos E; Bonaterra A
    J Appl Microbiol; 2014 Oct; 117(4):1122-31. PubMed ID: 24947806
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ppGpp controlled by the Gac/Rsm regulatory pathway sustains biocontrol activity in Pseudomonas fluorescens CHA0.
    Takeuchi K; Yamada K; Haas D
    Mol Plant Microbe Interact; 2012 Nov; 25(11):1440-9. PubMed ID: 23035953
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The adnA transcriptional factor affects persistence and spread of Pseudomonas fluorescens under natural field conditions.
    Marshall B; Robleto EA; Wetzler R; Kulle P; Casaz P; Levy SB
    Appl Environ Microbiol; 2001 Feb; 67(2):852-7. PubMed ID: 11157254
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica.
    Stallwood B; Shears J; Williams PA; Hughes KA
    J Appl Microbiol; 2005; 99(4):794-802. PubMed ID: 16162230
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effective dose of a microbial inoculant is one to four cells in the rhizosphere.
    Normander B; Hendriksen NB
    Can J Microbiol; 2002 Oct; 48(10):940-4. PubMed ID: 12489784
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple physiological states of a Pseudomonas fluorescens DR54 biocontrol inoculant monitored by a new flow cytometry protocol.
    Nielsen TH; Sjøholm OR; Sørensen J
    FEMS Microbiol Ecol; 2009 Mar; 67(3):479-90. PubMed ID: 19159420
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of temperature and starvation upon survival strategies of Pseudomonas fluorescens CHA0: comparison with Escherichia coli.
    Arana I; Muela A; Orruño M; Seco C; Garaizabal I; Barcina I
    FEMS Microbiol Ecol; 2010 Dec; 74(3):500-9. PubMed ID: 20955194
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alginate beads as a storage, delivery and containment system for genetically modified PCB degrader and PCB biosensor derivatives of Pseudomonas fluorescens F113.
    Power B; Liu X; Germaine KJ; Ryan D; Brazil D; Dowling DN
    J Appl Microbiol; 2011 May; 110(5):1351-8. PubMed ID: 21395945
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Real-time microbial adaptive diversification in soil.
    Gómez P; Buckling A
    Ecol Lett; 2013 May; 16(5):650-5. PubMed ID: 23438288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.